Chapter 6

Godel’s 2nd Incompleteness Theorem

6.1 Peano Arithmetic and I3

To prove Gédel’s 2™ incompleteness theorem we need to work in a theory slightly more expressive
than Rob. but nevertheless much less expressive than the theory of Peano arithmetic that we now
introduce.

Definition 1.1: Peano arithmetic

Peano arithmetic is a theory based on the same language as Robinson arithmetic : L4 =
{0,S,+,-}. But contrary to Robinson arithmetic, it has infinitely many axioms:

axiom 1. Vx Sz # 0

axiom 2. Vo Jy (x #0 — Sy =)
axiom 3. Vo Vy (Sx =Sy —>x=1y)
axiom 4. Vrz+0 =2

axiom 5. Yz Yy (:1:+Sy = S(a:+y))
axiom 6. Ve z-:0=0

axiom 7. Va Yy (x~Sy = (my)+x)

axiom schema (induction)  for any formula @[, o, . 2] ﬂ

-----

Va1 ... Vx, <<90[0/x07x1,...,xn] A Yo (SO[xo,m,...wn] — @[ng/zo,xh...,xn])) — Yo Sp[xo,zl,...,a?n]>

©,] eans that the free variable of ¢ are all among xo, z1,...,Zn.

AAAAA
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So we see that Peano is nothing but Rob. augmented with the induction schema for all formulas
constructed on the language of arithmetic. In fact we will not need to work within Peano but

only a fragment of it obtained by restricting the induction schema to the sole ¥9-formulas (see
next section). This theory is called Rob.+ I

Example 1.1

We saw that Rob. does not prove that the addition is commutative. We want to prove,
here, that within Rob.+IX the addition becomes commutative. For this purpose we make
use of several instances of the induction schema.

(1) We first show that
Rob.+IX0 - Vo z+0=0+z.

Indeed we have both

o } 04+0=040
o Rob. + Vx ((:E+O = 0+:U) — (Sa:+0 = O+S:U)) because we have by

@ Ve 2+0=2 and Y Yy (x+Sy = S(aH—y))

Rob. - Sz+0= Sz A 0+Sz = S(0+x)

hence
Rob., z+0=0+z  Sz+0=Sx A 0+Sx = S(z+0) A S(z+0) = Sz

So by applying the induction schema to the Ag—formula z+0 = 0+x we obtain the
result.

(2) We then show that
Rob.+I1%) - Vo Vy z+Sy= Sz+y.

Indeed we have both

o Rob. + Vx x+50= Sz+0 by

@ Ve x+0 =2 and Va Yy (x+Sy = S(x—i—y))
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o Rob. — Vzx ((JH—Sy = S:c+y) - (:L‘+55y = S:E+Sy)) because we have by

Vo Yy (z2+Sy = S(z+y))

Rob. . z+SSy = S(z+Sy)

hence
Rob., z+Sy= Sz+y  S(z+Sy) = S(Sz+y) = Sz+Sy.

So by applying the induction schema to the Ag-formula x+Sy = Sx+y we obtain the
result.

(8) Finally we show that

Rob.—kIE(l) - Ve Vy z+y =y+z.

Indeed we have both

o Rob.+IXY . Vo z+0 = 0+x for this was what we established in case m
o Rob. - Vx ((w—l—y = y+x) — (:L‘—i—Sy = Sy+m)) because by

Vo Yy (z+Sy = S(z+y))

we have
Rob., z+y =y+z ~ z+Sy = S(z+y) = S(y+x) = y+Sx

hence by applying case we obtain

Rob.+]2(1), z+y =y+r  z+Sy = Sy+zx.

So, in the end, by applying the induction schema to the Ag—formula T+Yy = y+z we
obtain the result.

Example 1.2

We saw that Rob. proves that every integer (standard or non-standard) is always comparable
with any standard integer:

@ Rob. + Vx (CL‘<TL v n<x)
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Now we establish that Rob.+I%{ proves that any two integers are always comparable:
Rob.4+I%0 - Vz Yy (a: <y v y< :v)

We recall that x < y stands for 3z z+x = y. So we consider the instance of the axiom
schema for the X\ -formula

ole,yl =3z z4x =y v Iz z+y = =z.

(3z 240 =y v 3z 24y =0) Iz 2tz =y
Yy A — Vz v
Vo ((32 ztx =y v Iz z+y = 1’) — (Hz z+Sx =y v Iz z+y = Sx)) dz 24y =2

(1) By @ Vr x+0 =z have
Rob. 3z 240 =y

which takes care of the first part: 3z z+0 =y v Jz z+y = 0.

(2) For the second part we need to distinguish between two cases:

if dz z+y = x we distinguish between z =0 and z # 0

if 0+y = x by Ezxample we have
Rob.+I%) - O+ty=x—>z=y

and
Rob.+I%0 - =y — S0+y = 0+Sy = Sy = Sz

if 1z # 0 z+x =y then
Rob., 3z2#0z+x =y 32 S+z =9
By Ezample we obtain what we need:

Rob.+I%Y, 3z2#£0z24z=y 32/ Z+Sz=y

if 3z z+x =y By Vo Yy (z+Sy = S(z+y)) we have

Rob., z+x =y k S(z+y) = 2+Sy = Sz
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and by Ezample we have
Rob.+I%0 - 248y =Sz — Sz+y = Sz
which gives the result we need:
Rob.JrIE(l), dz z+x =y + Jz z4+y = Sx
So, in the end, by applying the induction schema to the ¥9-formula
olz,yl:=3z 24z =y v Jz 2ty =1z

we obtain the result.

Example 1.3

We saw that Rob. does not prove that the addition is associative. We show here that
Rob.+1I%9 proves that the addition is associative:

Rob.+I%0 - Vo Yy Vz (z4y)+z = z+(y+2).
(1) We first show that

Rob. - Vz Vy (z+y)+0 = z+(y+0).
Indeed by @ Ve z+0 =2 we have
Rob. - (z+y)+0 = z+y = z+(y+0).
(2) We then show that

Rob. . Yz Yy Vz <(a:+y)+z = x+(y+z)> — ((x+y)+Sz = a;+(y+5z)).

by Vo Vy (z+Sy = S(z+y)) we have

Rob. b (z+y)+Sz = S((z+y)+2)

and also
Rob. b S(z+(y+2)) = z+S(y+2) = z+(y+5z)

therefore we obtain

Rob., (z+y)+z=2z+(y+2)  (z+y)+Sz = z+(y+S5z).
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(3) Finally, by applying the induction schema to the AY-formula (z+y)+2z = x+(y+2)
we obtain the result.

Example 1.4

We saw that Rob. does not prove that the multiplication is commutative. We show here
Rob.+I%Y proves that the addition is commutative.

(1) We first show that
Rob.+1%Y - Vr 20 =0-=.

Indeed we have both

o . 0:0=00
o Rob. + Vx ((:1:0 = O-x) — (Sx~0 = O-S:):)) because we have by
(6) Vzz0=0 and @ Vo Yy (z-Sy = (z-y)+x)

Rob. - Sz0=0 A 0-Szx = (0-2)+0

hence
Rob., z-0=0=zx I Sz:0=0=0+0= (0-z)+0.

So by applying the induction schema to the Ag—formula x-0 = 0-x we obtain the result.

(2) We then show that

Rob.+I%Y - V& Vy Szy = (z-y)+y.

Indeed we have both

o Rob.  VYx Sz:0=(x:0)+0 by a simple application of
@ Vr x+0=x and @ Vo x-0=0
o Rob. — Vx ((Sxy = (:ry)+y) — (S:L“-Sy = (a:-Sy)+Sy)) because we have by

@ Vo Yy (z-Sy = (z-y)+z)

Rob. . Sz-Sy = (Sz-y)+Sz
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hence
Rob., Szy= (ry+y H Sz-Sy= ((x-y)+y)+5x.

but we also know that the addition is associative and commutative, thus we have
Rob.+I1%) + zy+(y+Sz) = zy+(y+57) = vy+(Sy+2)
and
Rob.+I1%) + zy+(Sy+z) = zy+(z+Sy) = (v-y+z)+Sy = z-Sy+Sy.

So by applying the induction schema to the AJ-formula Sz-y = (z-y)+y we obtain
the result.

(3) Finally we show that
Rob.+I1%) - Vz Vy zy =y

Indeed we have both

o Rob.+IXY + Vo z-0 = 0-z for this was what we established in case .
o Rob.+I%?  Vx ((:cy = y-x) — (:U-Sy = Sy-ac)) because by

@ Vo Vy (z-Sy = (z-y)+x)

we have
Rob., zy=yzx  zSy=(zy)+zr= (yzx)+z

by case we have
Rob.+I%Y - (y-2)+z = Sy=x

which leads to
Rob.—i—IZ(l), zy=yzr  xSy=Syxzx

So, in the end, by applying the induction schema to the AS-formula -y = y-x we
obtain the result.

Example 1.5

We show here that Rob.+IX proves that the multiplication distributes over the addition:

Rob.+I%9 - Vo Yy Vz 2-(y+2) = (z-y)+(z-2).
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(1)

(2)

(3)

We first show that
Rob. . Yz Vy z-(y+0) = (z-y)+(z-0).

which is immediate by

@ Ve x+0=2 and @ Vr z-0=0

We then show that

Rob.+I%Y + Vz Yy Vz (a:-(y+z) = (:z:~y)+(x-z)> — (w-(y—i—Sz) = (w-y)+(x~Sz)>.

by @ Vo Vy (z-Sy = (z-y)+x) we have

Rob. + (z-y)+(2z-Sz) = (z-y)+((z2)+z)

and
Rob.+1%) (zy)+((z-2)+x) = ((zy)+(z2))+o

So that we obtain
Rob.+IX8, z-(y+2) = (zy)+(z2) ~ (zy)+(z-Sz) = (z-(y+2))+=.

At last, by

Vz Vy (z+Sy = S(z+y)) and @ Vz Vy (z-Sy = (z-y)+z)

we have
Rob. + (z-(y+2))+z = (z-S(y+2)) = (z-(y+52))

which terminates this proof.

Finally, by applying the induction schema to the AY-formula z-(y+2) = (z-y)+(v-2)

we obtain the result.

Godel & Recursivity
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Example 1.6

We show that Rob.+IX proves that the multiplication is associative:
Rob.+I%0 + Vo Yy Vz (zy)z =z (y-2).

(1) We first show that
Rob. - VYV Vy (xy)-0=2x(y-0).
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Indeed by @ Ve -0 =0 we have

Rob. - (zy)0=0

and
Rob. - z-(y0)=20=0

(2) We then show that

Rob. + Yz Vy Vz ((zy)z=1z(y2) = ((zy)Sz = z(y-5z)).

by @ Vo Yy (a:~Sy = (:Uy)+:L‘) we have

Rob. + z-(y-S2) = z-((y-2)+y)
and by Example we also have
Rob.~|—IE(1) . :U((yz)+y) = (:U(yz))+(xy)
so that we obtain
Rob 4150 , (z9)2 = (y2) ke ((2) +(wy) = (@9)2)+(@y) = (w3)-57
which gives the result.

(3) Finally, by applying the induction schema to the AQ-formula (v-y)-z = z-(y-2) we
obtain the result.

Proposition 1.1

The theory Rob.+I%Y proves that
(1) + is commutative;
(2) + is associative;
(3) - is commutative;
(4) - is associative;

(5) - distributes over +.
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Proof of Proposition E

(1) “+ is commutative” is Example
(2) “+ is associative " is Example[1.3,
(3) “ is commutative ” is Example
(4) “ is associative ” is Ezample[1.6]

(5) “ distributes over + 7 is Example .

6.2 The Arithmetical Hierarchy

For the purpose of defining the arithmetical hierarchy we add a binary symbol “ <7 to our
language but essentially for the purpose of denoting bounded formulas such as Jy <t ¢ and
Yy <t @. In a sense, this differs from the use of this same symbol inside Robinson arithmetic
(see page where it was an abbreviation for ¢ Jy (y+x =2z AT # z) ”?. For the reason that
in what follows we will have

o “Jy (y+x =2 AN T# z) 7 is a X\-formula, and
o “Jx <z x+#z"is aA)-formula.
We will be working with Rob.+1I% so for every x and y we will have both
T<Yy Vyse

and
Jz 24r =y <= 3Jz xzt+z=y.

Definition 2.1: Ag-formulas

The set of AY-formulas is the least that
(1) contains all atomic formulas: ty = t1
(2) is closed under conjunctions, disjunctions and negations

(3) is closed under bounded quantifications. i.e.,
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if p € AY and t is a term, then both formulas “Vx <t ¢ 7 and “Ix <t ¢ ” belong to
AJ.

Definition 2.2: arithmetical hierarchy

The hierarchy of formulas from arithmetic is defined by induction on n € N:
(1) 59 =11 = A

(2) X0, is the set of all formulas that are (logically equivalent to formulas of ) the form
321 ... 33, © where p e T10.

(3) 0, is the set of all formulas that are (logically equivalent to formulas of ) the form
Yoy ... Vo @ where p e X0,

(4) A9z+1 = E?l-‘rl N H?H—l

Notice that all the classes defined above are closed under (finite) conjunctions and disjonctions.

Example 2.1

(1) o < S(wa-S71) — Vy<ax3 y+r9=173 € A
(2) Vx Yy (x-Sy = (x-y)—&—x) e Y

(3) Yz Iy (x #0— Sy=x) € II9

Proposition 2.1

Given any n € N and any X9-formula o := 3xo 3x1 ... Iz,9 where ) is Ag,
there exists some AY-formula 1" such that

Rob.  Jxg Iy ...3201) <« 7).

Proof of Proposition E
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We set

W =3zg<zIdri <z... 3z, <2 (an+1(:p0,:v1,...,xn) =2 A 1/1)

where a1 (xo, T1ye.., :L‘n) = x denotes the Ag—formula defined by induction on n > 0 by

o “ag(xg,xl) =x"1is “y <z (xot+x1) (xo+x1+50) =y+y A y+ax;=2xa"

o “an+1(xo,:c17...,xn) =x”714s “dz<x (O(Q(.’Eo,l‘l) =2z A an(azo,xl,...,xn_l,z) =

x) 7,

Proposition 2.2
Given any n, ki, ..., k, € N and any EgH—formula and H%H—fm"mula respectively

= Jzf x5 ... EI:L"ZnV:rz?f1 .. .V:cz;_llEljj?f2 . 32;_2 Vx?ig ...... Qaz% . Qx}cl )
where Q is either ¥ or 3 depending on the parity of n, and v is AY, and

o n n n n—1 n—1 n—2 n—2 n—3 3.1 3.1
0 :=Vay Vay ... Vap 3oy . dwp Vo Vg Jay T Qry...Qug, v

where Q is either V or 3 depending on the parity of n, and 7y is AJ,

there exists AJ-formulas ¢ and v such that

o Rob. - ¢ «— Iy Yyn_1 In_2...Qu1Y’, and

o Rob. - 0 «— Yy, dyn_1 Vyn—2---QZ/1’Y/-

Proof of Proposition @

This is an easy exercise based on the same idea as the one used to prove Proposition|2.1.

O

From now on, I' stands for any of the classes E?LH, Hgﬂ, AY (anyneN).

Proposition 2.3

Given any formula 1,
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o Jy<zIzyY «— Jzdy<zyY

o Yy<zVzy «— VzVy<av
Proof of Proposition E

Immediate.

Proposition 2.4

Given any n € N, any term t that does not contain the variable z, and any formula ¢ € T

there exists ' € T,

(1) Rob. . y<tVz ¢ «— VzIy<t ¢

(2) Rob. . Vy<tiz ¢p « FzVy<t .

Proof of Proposition E

(1) The idea is to have z encode a sequence of t many integers, and to consider all such

sequences. For this we set

Y = (906(560,1/, 2,27 A Tl}[xo/z])

where pg(xo,y, 7',z 7) represents the primitive recursive B-function that was intro-
duced on page in the proof of Lemma as a consequence of the Chinese Re-

mainder Theorem (page .

Indeed, on Lemma on page we proved that there exists some function 3 € NV
which is both representable and Prim. Rec. such that for all k € N and every sequence

no,n1,...,n there exist a,b € N such that

B(k,a,b)
We recall that pg(zo,y,2',2”) stands for

zo < S(2-Sy) A 30< 2"

<9~S(2/-Sy)) +x0 = 2"
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so that we obtain
Rob. . Jy<tVz ¢ «— VI V" Iy<t ¢
from where we apply Proposition [2.9 to get the result.

(2) Mutatis mutandis, the same idea works fine.

We are now able to state a stronger version of Theorem |2.2:

Theorem 2.1

Every total recursive function is representable by some X9 -formula.

Proof of Theorem E

It is enough to go through the proofs of Examples and Lemmas[2.1]

and notice that all formulas we defined were ¥3-formulas. O

6.3 A First Glance at Gédel’s 2" Incompleteness Theorem

We first recall that by Theorem [3.1] the set below is
{(er, r;j) e N2 | P is a proof of T gp}
o primitive recursive if T is primitive recursive,

o recursive if T is recursive.

We consider any recursive theory T 2 Rob. and consider some ¥9-formula Boroosp (1, T2) which
represents the set above. This means that for all i1,i5 € N we have:

o if (i1,12) € {(rpw7 Y) e N? | P is a proof of T . cp}, then Rob. ‘PpmofT(il,iQ);
o if (i1,12) ¢ {('P', Y) e N? | P is a proof of T . cp}, then Rob. H, ﬂgopme(il,ig).

so in particular if T is consistent, we have
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Pis a proof of T + ¢ <= Rob. = ¢, (["7',[ ).

We consider the following primitive recursive function diag: N — N.

I‘YA"‘ rul ) =y elF !

0 otherwise

together with any E?-formula Pdiag(®0, 1) that represents diag. This means we have
forallneN
Rob. , Vzq (diag(n) =z0 <« (pdmg(:vo,n)).

We define the X9-formula = (z9) by

2 (20) =371 32 (B0 (€1, 2) A Pdiag(w2,70)).
Proposition 3.1

For every integer n we have

NEZ(n) < Rob. + Z(n).

Proof of Proposition E
(1) ifn="0"€Fruy .. and there is a proof P of T b @[y .1/ze] we have both

Rob. . Paiag([ 2 17/201 s 1)

and
Rob. o oy ([P 11 11100 )
therefore
Rob. +~ dxq1 Jxo (gopme(:m,im) A @dmg(fﬂ%”))
which is

Rob. - Z(n).
2) ifn="0"€F .. and there is no proof P of T . @[ ,1/z1 we have for all proofs
0 Ifree ” ¥ ]/ 0]
P

Rob. . Vo (‘;Odiag(l?vn) 2 =[P .,\ﬂ)

and
Rob. b =By ([ P11 011001 1)
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and furthermore for every integer i
Rob. b = Byug (i [ 2111001 1)
therefore, since N = @rop., by the soundness theorem we have

Rob. 1AL Z(n).

(3) if n¢ Frug e, then for every integer iy,
Rob. . ﬁappmofT(il, diag(n))
for the reason that for all integer iy
(i1,0) ¢ {(rpj, e N? | P is a proof of T +. go}

because 0 is never the code of a formula. Hence, by application of the soundness
theorem we have

Rob. 1AL Z(n).

So to speak, N == (n) asserts:

“n is an integer that codes some formula p; and there exists a proof that there is a 1 on
position (i,1) in the array below ”.

%o P1 P2 ¥3 P4 Ps5 Pn
1 1 0 1 0 0
1 1 0 0 0 0
1 0 0 0 0 1
0 0 1 1 0 0
0 1 0 1 1 0
1 1 0 0 0 0
1 0 0 0 1 1

There is a 1 on the array — for instance on row 3 and column 2 — if T . pa([ v3']), and there
is a 0 — for instance on row 2 and column 5 — if T V£ p5([ ©2']).
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We now consider

(1) the formula —= (z¢) (that we write == to lighten the writing);

2l

(2) the term that represents its code: '—=';

)

a

(3) the term that represents the code of the formula == (xo) that “eats ” its own code: "= ="/, -

Claim 3.1

Rob. k. E[ =z < 3$180pmofT(331a [—= [—=1 -mﬂ)

which is precisely

Rob. [ 31‘1 ng ((ppmofT(ajl,mg) AN Spdiag($27 ['ﬁE'-l)) «— Elxl(ppmofT(xlv ['*E”‘,EV] v,,”]]]) .

Proof of Claim E

(<) By the very definition of the function diag and that @ g.g represents that function we
have

Rob. Spdiag([rﬁz\['ﬁ?] .n,|1]7 [rﬁzj]))
thus

Rob. I, Hxlgopme(xl, ['ﬁEHrﬁ;] 0] ]) — 31 2 (cpmnfT(xl,xg) A Pdiag(T2, [ﬁE]))
(=) Since paiag represents the function diag we have
Rob. + Vo <g0dmg(:c2, [*E])) — a9 =[5 = ,,.“]'D
therefore
Rob. - Jz1 Izo (cppme(ajl,ajg) A diag(z2,[ —Z="])) — Elxlgopme(:L‘l, ["—Z = ')
O

Claim 3.2

TV =Eq ="/l
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Proof of Claim @

Towards a contradiction, we assume that
T =5 =)

It follows that there exists an integer "' such that
(P T Z D e () eN? [ Qis a proof of T 1 5.

Therefore, since @ represents the set above, we have
proofr

T0O,

Rob. o Gy ([P 27001 1)

and by Claim[3.1] we obtain
Rob. e Ejj=/ao)

Since Rob. € T we obtain
T = E(-=1/m0)

which contradicts the fact that T is consistent for we obtain both

T = E[ =120 and T = =E[=/a)

Claim 3.3

Rob., } )
_ . . o E[=/e0] — —cons(T).
Bl = a0l 7 I Gnep, (@1 [ =001 ) i

Where —cons(T') stands for the following formula:
30" (320 Gruop (0, 0) A T2 B, (20, ) ).

(We recall that we write 3" ... for “Iz (pz(z) A ... ")
Proof of Claim @

From Claim [3.1 we obtain

Rob. = B[ =/zo] = I21G0r (T1 [ (=700 1) -
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Thus we have both
O Bl =m0] = I Bros, (B[ Zi =100 ) B B2 m0] = 3180, (@11 Epr2700 )
o Rob. = B[ =/zo] — ElxlgopmofT(xl, [fﬁEH‘ﬁz‘] ,,,']‘1])

which leads to

Fr—

321 Gppopy (@15 I Er 27000 1)

Rob., } A
_ . . Fo B2 e0)
Bl = Vmo) = 381 B, (1 [ E (27001 1) 0 3z1 @, (21, [ E
1 proofp 1 =

(=10 1)

By the very deﬁnitionﬁ of ¢, and @, we have

roofp TOOFR ob.

o Rob. . Yz Yoy (cppmfmb.(xo,xl) — S%Too,fT(mOv:El))'
Therefore we obtain

R )

Rob., } A
= = N SRS T2 g
B0 Vo) > 3 B, (T Zi1 1100 ) B = 1)
1 proofr 1 ‘:H'*E'] ,I‘H‘

which yields the result.
O

that represent the two recursive

“This means: if we choose wisely the 29-formulas ®,
sets

roof and Porootg op.

{(r}“, e N? | P is a proof of T go} and {(r}“, e N? | P is a proof of Rob. ap}.

Lemma 3.1

Let T 2 Rob. be any consistent recursive theory.

If
T b B =Vao) — 318, (@1 [ =100 1)
then
T £ cons(T).
Proof of Lemma E

Follows immediately from Claims and[3.3. O
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So we are left with the problem of characterising the consistent theories that both extend Robinson
arithmetic and prove this very strange formula:

B =1e0] ™ 381 Gng,y (T [ S0 1) -

Ultimately we will show that Rob.+IXY is a good candidate. Indeed, we will show

ROb—l—IE[l) [ E“rﬁ?]/xo] — E|l’1(ppmchob'((L'1, [ILHFﬁEj] o] I]) .

In order to show that this result holds — and because it can easily be seen that the formula
E[[—="/a0] S Y0 — we will rather show that the following result holds for every ¥9-formula :

Rob.4+I%) + ¢ —> 3210, 0t (T15 27 -

6.4 The Core of the Proof

We are going to prove that given any closed X.9-formula ¢, the following holds:
Rob.4+IY) - ¢ —> 321G, 0, (X150 -
There are two different misapprehensions that one must avoid:

(1) The assumption that ¢ is some closed ¥.9-formula is crucial. Indeed, the result does not
hold for any closed formula, not even closed I19-formula. Indeed, we saw in Evample M
that Rob.+I%Y proves the commutativity of the multiplication. We also saw in Ezample
that there exists some model of Rob. that does not satisfy the commutativity of the
multiplication, hence, we have both

o Rob.+I¥Y + Vo Vy xy=yzx o Rob. t£, VYx Vy xy = y-x.
So, if Lemma were to hold for T1Y-formulas, then we would have

ROb.+IE(1) [ 3$1g0p (1‘1, Vr Vy oy = !/-.:'1).

TOOfR 0b.

Hence, by the completeness theorem, we would also have

'ROb.—i—IZ? = Iz1¢p, x1, Ve Vy vy =yax');

TOOfRobA(

and in particular
N | 3216, (@1, V2 Vy 2y = y2').
But from an integer that codes a proof of the formula Yxr Yy x-y = y-x from Rob., we

would get a proof of the sequent Rob. + Vx Yy xz-y = y-x, contradicting the fact that
Rob. A Ve Vy zy =y
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(2) At first glance, one may think that

R0b+12? H w— EI'rl('DP'r(mf'Rob.(ajl7 IT:I) <61)
s equivalent to

Rob.+I%] - ¢ = Rob.+I%) k= Ir1g,,, (11,0, (6.2)

To see this, notice that when Rob.+I%) £ ¢ holds, then trivially holds but s far
more involved. Indeed,

o if Rob.—i—IE(l] F —, then prom'ng s easy since it is equivalent to proving

Rob.+I%0 F —pv 7190, (r1, ).

T00fR ob.

o But if Rob.+IX) £, —p, then one must show|6.1 on the basis that Rob.+I%Y proves
neither © nor —.

On our way to proving Lemma 4.6, we will prove which will require the following result:

Proposition 4.1

Let ¢ be any closed X -formula.

N ': (SO N Elxlgop'mofRob.(x:b I\;I) ) ’

Proof of Proposition E

we distinguish between the two directions of “«—— 7.

(<) We assume N = 3Ja1g,,,. (21, ). So, there exists some standard integer that
codes a proof of ¢ from Robinson arithmetic. From this standard integer, we recover
a proof of Rob. - ¢, which shows that ¢ holds in all models of Rob.. So, ¢ holds in
particular inside the standard model (N).

(=) We assume N = . We then show, by induction on the height of ¢,
N ): Elxlgpproofnob'('%j’ I?"'I) :

We can easilyf’] show the following:

(1) for every closed terms t; and to,
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NEti=tas = NE Elxlgopmofmb'(xl,'h =15).
(This is done by induction on the height of t1 and ts.)
(2) For every closed AY-formula ¢,
NEp = NE Hxlgopmofﬁob‘(xl’ Y.

This is done by induction on the height of @ with the following statement taking
care of bounded quantifications:

@Rob. Ve [z<ne—(z=0v 2=50 v ... v z=n)].
3) for every closed YX9-formula of the form 3z ...3z, where ¢ is some AY-
1 ¥ P 0
formula,

N E dz; ...3z, ¢ = N E 3$190pmofmb_(331,'3.2‘1 c3x, @)

This holds because

N E dz; ... 3z, ¢ for some k1,... . kn € N, Oy jay . ko /w] Polds in N

N ): Plk1/z1,....kn /0]
N ): 3x1¢pTOOfRob4($17 r?“ﬁ‘kl T kn/zn |—|)
N E 3

(by ind. hyp.)

bLld

gopmofﬁob.(xl, 1 ... 3, @)

“the whole proof involves many cases. It is tedious but straightforward.

This proposition yields an easy but amazing corollary. We mention a result about the Goldbach
conjecture, but the same remark holds for all conjectures in arithmetic that can be expressed by
some T1Y -formula.

Corollary 4.1

If the Goldbach conjecturd® is neither provable nor disprovable, then it holds true in the
standard model N.

“Goldbach conjecture is: “ every even integer strictly greater than 2 is the sum of two prime numbers”.
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Proof of Corollary IE

The Goldbach conjecture is some 11§ statement. If the negation of the Goldbach conjecture
were true in N, then by Proposition it would be provable. ]

We introduce a few definitions in order to characterize the models of Rob. as final extensions of
the standard model of arithmetic.

Definition 4.1

Let M and N be two models of Rob., such that M is a substructure[’] of N

N is a final extension of M

=

for every a € |IM| and b € |N| we have both

o if N = b<a, then be |M| o ifb¢ M|, then N = a<b.
? M is a substructure of N iff
o M| < [N

M N

o for every constant symbol ¢: ¢’ = ¢

o for every function symbol f whose arity is n: fM = fN 1 | M["

o for every relation symbol R whose arity is n: RM = RN ~ |M|™.

Lemma 4.1

If N is a model of Rob., then the substructure M whose domain is
M| = {n¥ | neN)
18 isomorphic to the standard model N.

Proof of Lemma IE

Left as a very easy exercise.
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Lemma 4.2
Up to isomorphism, every model N of Rob. is a final extension of the standard model N.
Proof of Lemma @

The mapping f : N — |N| defined by f(n) = n" is an injective homomorphism that
satisfies for every n € N and b € |N|:

(1)

NEb<n = N Eb=0vb=S0v ... vb=n — flbeN
This is by
r<7//\)\ Rob. - Vo [z<ne—>(z=0v 2=50 v ... v z=n)].

(2)
b¢ fIN] = N E n<hb.

This is by
@’Rob. - Va (wénvnéx)
and
(@ Rob. - Vz [z<ne—(z=0v 2=50 v ... v z=n)].

This shows that N is a final extension of its substructure induced by f[N] which is isomor-
phic to the standard model.

O]

Now that we know that models of Robinson arithmetic are final extensions of the standard model,
we can prove the result that follows.

Lemma 4.3

Let ¢ be any closed ¥9-formula.

RObJ’_IE? e = RObJ’_IE(l) r Elxlgppmofnob.(xl’l\;l)'
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Proof of Lemma @

We make use of the completeness theorem and of the fact that the standard model (N) is a
model of Rob.+1I%.

(=) Since
Rob.+1%Y . o,

the formula @ holds in all models that satisfy Rob.+1%Y. So in particular we have

N E .

By Proposition this leads to

N E Elazlapmoofmb-(a;l’ o).

Therefore, there exists some (standard integer) n that codes a proof of ¢ in Robinson
arithmetic. i.e.,

N ): gppruofRobA(T% r‘?':—l) .
Then, we consider any model M such that satisfies
M E Rob.+I%0.

From Lemma M is a final extension of (a structure isomorphic to) N. Now,

Poroosr,y (T ©') 08 some closed Ad-formula, all the various bounded quantifications
are bounded by (terms that depict) standard integers. From this fact, it is as usual
tedious but straightforward to show by induction on the height of ¢, n, p') that

TDGfRob,(

M ’: SpproofRob'(n7 '7;') .
From where we obtain
M ): Elxl(PprDafRob'(x17 IT:I) :
(<) Since
Rob.+T1%) K 3:51gowofROb‘(3317 i’y

holds, we also have
N E 316,00, (@1, ©) -

Therefore, there exists some (standard integer) n that codes a proof of ¢ from Rob..

N ): @proofRob_(n? r‘YA—l) ‘
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Such a proof is also some proof of ¢ from the theory Rob.+I%Y, which witnesses that

we have
Rob.+I%) K .

O]

Before we come to the proof of Lemma @ — which will immediately yield Gédel’s 2" incom-
pleteness theorem — we need to take care of some humongous preliminary work.

Lemma 4.4

Let t[y,,. o, be any La-term (where L4 ={0,5,+,-}).

0 . .
Rob.+I9 1 Yy ...V, Vxn+1(thlwﬂmd — g — ong%m#Rw(J@,/MHHMI”|:;1”+|)>[}
“Where /[, . ., =z stands for the formula 1., )= T e ey e e e, e JETN
meaning that /[, e ] = Thp g " is a formula whose n + 1 (necessarily free) variables are
Thyye v Thys Thy gy and '/‘ o1rean] = Tt " is this term after the subsequent substitutions have taken place:
S, < ST (Sﬁ,' (rf[,,‘, sz, ] = Thy, R A /ﬁ), o', kz), ceoy Tt kn+1>-

Proof of Lemma E

We prove the result by induction on the height of the term t(y, . ..]-

ht(t) = 0 we have three cases:

t =0 we need to show
Rob.+15] = ¥ani1 (0= 2ns1 — F00 G, (20,0 = 201 )
which is
Rob.+ 150 . Vanss @¢xwlv3m¢%%w@mnzﬂun>
which comes down to proving
Rob.+150 Hm)%m%bﬁme):0ﬁ>.

The code of the following proof is just what is needed:

0:0%0:0%
F0=0
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t = Xntr1 we need to show
0 r 1
Rob.+1%] H Vant1 (l’n+1 =Tpe1 —> Jxg cppmfRob.(xo, Tp4+1 = Tp+l ))

i which case the code of the following proof is what is needed

axr

Tntl = Tpt+l - Tptl = Tntl

F Zp+1 = Tnta i
t=x; (i#n+1) we need to show
Rob.+150 . Va; Yans (ac = Tap1 — 32 gy (@0, 0 = ,I,NH.))
which s also
Rob.—kIE(l) F Vo, Vg (ml # Tpe1 Vo dxg SopmofRob(xO’ "1 = .r,'j))
which comes down to proving
Rob.+I%Y . Vi w0 @, (20, 70 = 2,).

i which case the code of the following proof is what is needed

axr

T =T; = x; = x5

Ref
Fx=x
ht(t) = k + 1 we have three cases:
t = Su We need to show
Rob. 4150 - Vai ...Van Yani1 (Su[mlyu_’mn] = Tns1 = 370 Gy (@0, S, ,,.,,ﬂ‘))‘

We proceed by induction on x,1, which means we need to show

(1) Rob.+I%y + Vi ...V, (Su[x1 2] =0 — 3o gopmof%b.(xo7 "Sua, ] = ()1) )

The result follows immediately by @ Ve Sz #0 .
(2) And assuming that

ROb.-l—IE(l] Yz ...Vz, (SU[ZI 2n] = Tnt1 — dzg SDP"OOfRDb,(xOv ‘S//‘J o Tn \.))

yeeny

'/1;07‘5”\,;‘,,,,,, | = S.I‘” j‘)).

ootz (
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By @ Vo Yy (Sz = Sy — x =vy) together with the induction hypothesis

we obtain

Rob.+I%0 +, VYa; ...Vx, (Su[zl ,,,,, en] = STny1 —> JTo gpp,_oufnob.(aco, Ulzy,.on] = Tn |))

We notice then that for any term a,b we have the following proof:

azr.

Sa = Sx [b/z] Sa = Sx [b/x]

a="0b,5a= 5z /) - Sa =5 v

wkny

a=b, Sa = Sx [b/x],Saz Sx [a/x] F Sa = Sx [b/x]
a=0"b5=Sar Sa=5b .
a=>br Sa=5b

Rep

ef

Or simply

Sa=5br Sa=25b "
a=>5,5a=5b+ Sa=25b
a=0>b,5a=.5bSa=Sat Sa=5b
a=>b,Sa=Sar Sa=>5b o
a=>bF Sa=25b
Then, we consider one application of the cut rule to get a proof of
Rob. = Sa = Sb assuming a proof of Rob. —a =b

Sa=Sbr Sa=5b
a=>b,5a=5b+ Sa=5b

wkng

wkny

Rep

kny

wkny
a=>b,Sa=5b,5% = Sat Sa=5b B
ep
: a=>b,5a=Sal Sa=5b s
I .
Rob.-a =10 =bF Sa=5b ,
Ccu
Rob. - Sa = Sb
So, replacing a by upg, .. 4.1, and b by Typ41 we obtain
SUlgy,..zn] = STn41 b SUlgy, . 2,] = STn+1 ” X
3 ~ - kng
Uley,ozn] = Tnt1s OUlgy, 2] = STn41 b SUlgy, . 2,] = STn+1 i
g - wkny
Uzy,an] = Tty SUay,zn] = STt 1, SUay,zn] = SUzr,zn]  SUar,an] = STntl .
Y °p
. Ulgy,.swn] = Tntl, Su[zl,...,z,,] = Su[wl,...,xn] = Su[xl ..... Tn] = ASJJnJrl
Rob. b [z, . 2,] = Tn+1 Uley,own) = Tntt b Uy ] = STnr1 ,
Rob. + Su[xl ..... Tn] = STnt1 -

n

So, from the code of a “proof” of Rob. - upy, . »
a “proof” of Rob. = Sug, . 2.1 = STn+1-

| = Tn41 we easily obtain
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We then make use of the fact that upy, . ;.1 = Tnt1 18 AJ to obtain

Rob.+1%0 + Yoy ...Vani (Su[m’wxn] =Tpi1 — dxo nppmfm})_(xo,rSu‘,.1 vvvvv 1= Tn 11)).

t = ut+tv We need to show

Rob.+I%0 + Vo1 ... VYni ((“+v)[z1,~~~,zn] =Tpy1 — o %7‘00&0&._(%’ (Ut+V) 2y, z0] = Tn f) >

The proof goes by induction on v.

v =0 We need to show

Rob.+15 b, Yoy ... Vans <(u+0)[zl o] = Tngt = 370 @y (@0, (0O, :,,.H‘))

,,,,,

Since by @ Ve z+0 =2 we have

Rob. + VYri ...Ve,41 (u+0)[x1,...,mn] = Ulzy,....xn]

Since our proof is by induction on the complexity of the term t and u is less
complicated than t = u+v, we have

R0b+12[1) [ v.’El ce vx’n-%—l (u[zl,.“,zn] = Tn+1 — 3xO %F,.(,ufnob_(xm ‘“\ C1,eytn] — Ln ll) )

The “code” of the following “proof” yields the result.

azx.

u+0 = xpy1 H ut+0 = 254
U= Tpt1,U+0 =2py1 - ut+0 =254

whkn,

azx. wkn,
u+0=u - u+0 =u b = ut0u = g, ut0 = B Ut = epl
: Voo x9+0 =20 u+0=1u u+0 =u,u =Tpe1 - ut0 = Tpy1
cut
Rob. - u = xpt1 Vrg o+0 = 2o, u = Tpa1 H u+0 = Ty

cut

Rob. = u+0 = x4

v =x; We need to show
Rob.+1%9 +, Va1 ...V, ((u—o—xi)[xh_“’xn] =I,y1 — dxg gppmomoh(xo, (UHTi) (2, 0] = Tntl '))
For this purpose we use the fact (u+xi)[z1,_.,xn] = Tpyq 1S Ag and proceed

by induction on Tni1:

(1) The initial case is x; = 0, which we already considered.
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(2) Assuming
ROb-’-IZ? — v.’L'l .. -V-'L'n-&-l ((u_._xi)[xl,...,xn] =Tp+1 — 3xO QDPTOOfRob.(xO’ r(;”+'1‘/‘)[,m.....vr,JJ = Tn 11))
Rob.+1%) - Voy ... Vo, ((U+Sxi)[x1,...,zn] =2, — g gopmfmb.(x()’ "(UASTi) (2, 00] = Tt .))

Once again, we proceed by induction on Tpi1:

(a) The initial case is xp+1 = 0. We need to show

Rob.—&—IZ(l) F Vo ... Vana ((u+5xi)[$1,_._7$n] =0 — dxg ‘Ppmo/mb‘(movI(”+S"’z)[”.,‘,_,,r,,\ = 0'))

which follows immediately by @ Y Yy (:U+Sy = S(ery)) and @ Vo Sz #0 .
(b) We assume
Rob.+I1%0 b Vi ...Vanil ((u+Swi)[x1V_qzn] = Tur1 = 370 Gy (@0, (0F ST :,,,”A]j))

and we need to show

Rob. 4120 - Vai ...Yoni1 ((u+sxi)[m,,zn] = STpi1 = 300 Gy, (@0, (WFST) 0y ) S,r,_l.))

By

Vo Yy (z+Sy = S(z+y))
and

Va Yy (Sz = Sy -z =)
we have

ROb.-l—IE(l) F Vo, ...V, <(U+Sxi)[x1,...,xn] =Sxpy1 — (u+xi)[x17“_7xn] = xn+1)
By the previous induction hypothesis, we have

Rob.+1%0 + Yoy ... Vou4 ((u—&-Sazi)[zl,._,yzn] = Szpe1 — dxg @Woolnob,(xov (AT o] = T ‘))

For this consider the “code” of the following “proof” where a,b,c are re-

placed respectively by Ufg, . z.]s Tifer,....en]s Tntl-

S(ath) = Sc- S(atb) = Sc
(a+h) = ¢, S(a+th) = Sc - S(a+b) = Se .
(@+b) = . S(a+h) = Se, S(arb) = S(a+h) = S+ = Se " S =Scraish=Se .
(a+0) = ¢, 5(a+h) = S(a+b) - S{a+h) = Se a+5b = Sc, S(a+b) = Sc - a+5b = Se -
(@th) = e+ Sa+h) = 5e Sa+b) = a+Sh,a+Sh =S¢, S(a+b) = e arSb="Sc '
Rob. - S(a1b) = Sc @+ 9b = S(a+b), 5(a+b) = Sc - a+8b = Sc
Rob. at5h = S(a+h) Fa+Sh=Sc

‘‘‘‘‘

Ref

0+ Sh="S(ah) - arSh="S@rbh) | Rob. - ath=c
Vay a+ Sz, = S(ate) - atSh = S(atbh) |
Vo Va1 w0+5a1 = S(zo+a1) - atSh = S(ath)

Rob. - a+5b = Se
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This terminates the proof by induction on x,+1. Hence, we obtain precisely
the formula that we needed to complete the proof by induction on x;. There-
fore, the whole result is proved.

v = vo+vy is left as a tedious exercise.
v = vg-vy s left as a tedious exercise as well.
t =uv We need to show
Rob.—i—[Z? F Vo ... Vo, ((U'U)[xl,...,zn] =z, — dxg @proofmb.(mo, “ UWO)[r,..zn] = Tn |1) )

The proof is similar to the case of the addition, and we leave it as a long and
tedious exercise.

O

We took care of atomic formulas. The next result will — almost — take care of Ag—formula
(notice that the negation is missing in what follows).

Lemma 4.5

The set of all formulas ¢ that satisfy

Rob+IE(1J . Vx1 ...Vo, <<10[Il,~-.,$n] — dxg (va~oofRob,(I0’r?|f‘w ,.H|1)>.

is closed under

o conjunction o bounded universal quantification

o disjunction o existential quantification.

Proof of Lemma E

Conjunction: if ¢ := (¢ A 60), and
© ROb+IZ(1) l_c vxl e vwn (w[aﬁ17...7$n] - 31'0 (PproafROb'(x07 r( ".1 1yeeesTm |-I) )
o Rob+IZ(1) F Vzi ...Vo, (0[:B1,...,xn] — dxg SOWOOfRoh(xO’ r(}lu o ‘1) )

We consider the “code” of the following “proof”:
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Rob.- &  Rob.F 0

Rob. - A 0 e

which yields

o Rob.+1% + Vay ...Vz, ((w A zr,zn] — 70 sﬁpm(,fmb‘(wo,r(f' AN O)ay ... ,,,11)>-

Disjunction: if ¢ := (¢ v 0), and

o Rob.+1%Y +, Va1 ...V, (w[zl,...,zn] — dzo gpproofRob'(‘rO?I(‘[z'\,_.,.)",,]l))

We consider the “code” of the following “proof”:
Rob. 1 v 0

which yields

o Rob.+1%) k, Vi ...V, ((wve)[xl 77777 2] ™ 30 Boop, (0, (0 v (/J[”,w,‘,f)>-

Existential quantification: we consider 3y ¢, assuming that the following holds:

o RobAIY b Vay ... Va, Vy (ga[th’xmy] — 3z %Wm()b'(xo,'ﬂ,,\,__w,,”w')).

by considering the “code” of the following “proof”

ROb. l_ @[:ﬂl,...,wnyy]
Rob. = 3y Pay,. . an]

T

we obtain

~~~~~~

Now given any formula v in which y does not occur freely, we have
o Va1 ...V, Yy <90[a:1,..,,xn,y] — w> «— Vr1 ...Yo, (Hycp[th,mn] — w>.

Since y does not occur freely in the formula 3z ¢, (q:o, Y Pl an] '), we obtain

TO0fR ob.

o RobA+IXY + Vzi ...V, (ﬂy Plar,en] — IT0 gopmofmh(xo, Ty ﬂ,u.....,r,,lj) )
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Bounded universal quantification: without loss of generality we consider formulas of
the form Yy < x.,, ¢ since for every term t the formula Yy <t ¢ we have

. Yy<to «— Yy<axy, (xm =t A1)
We assume that the following holds:
© ROb—’_IE? l_c vxl A V:Cn vy (QO[wl,...,wn,y] - Ell’o SpproofRob'(xO’ rle.l‘\,,...,l',,.,I/‘—l) )

Strictly speaking, the formula Yy < z,, ¢ stands for Vy (y < Ty — go) which is
nothing but Yy (Hz (z#0 A z4+y = zp,) —> go) where y does not occur (freely) in
@ and we have

o Vy (32 2 #0Azty=am) = @) <« VyVz (z#0Azty=1am) — )
We need to prove

.....

We prove the result by induction on x.,, which means that we make use of an instance
of the induction schema. For this, we need to show that

(1) the case holds for x,, =0,
(2) and that it also holds for Sx,,, assuming the case holds for x,,.

(1) the initial case is
0 Rob.+IS) b Yz, ...Yen (Vy<0 Clerrn] = 320 Gy, (@0, Yy < 0 ﬂ,‘w,m“'))
which is easy since the following holds.
o Rob.+I¥Y - Vy =y <0
(2) we assume
0 Rob.+I%Y b Vi ...V Yom (Vy<mm Plorrsan] = 320 Gy (T0, Yy < 201 21, ‘))
and we show
0 Rob.+I%Y b Vai ...V, Vi (Vy< ST Plarn] = 30 Gpongr, (@0, V0 < St Py “))
Firstly, notice that we have
o Rob. + Yy Van, <y<S:Um — (y<a:m v yzxm)>
Secondly, we have both
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.....

,,,,, proof R o

By mizing accordingly the two “proofs” we get what we need.

We finally come to the proof of the main lemma.

Lemma 4.6

Let ¢ be any closed ¥9-formula.

ROb—f—IZ? = o — Elxl(pprwfnob,(wl’ I\;I) .

Proof of Lemma @

(zo, Yy < w0 21

"))

O

From previous lemmas we already know that this result holds for the class 3 that contains

all atomic formulas (Lemma and is closed under (Lemma

o conjunction o bounded universal quantification

o disjunction o existential quantification.

We recall that A} was described as the least class that
(1) contains all atomic formulas: ty = t1
(2) is closed under conjunctions, disjunctions and negations
(3) is closed under bounded quantifications.

Notice that A8 can equivalently be defined as the least class that
(1) contains all atomic formulas: ty = t1
(2) contains all negations of atomic formulas: to # t1
(8) is closed under conjunctions and disjunctions

(4) s closed under bounded quantifications.

So, notice that in order to show that X = %9, it is enough to show that ¥ contains all

negations of atomic formulas (to # t1).
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To see establish this, we notice that every formula of the form t # w (where t and u are
terms) satisfies

o Rob.—i—IZ? ~ Vai ...Vx, (t;ﬁu — (EI:CO t+Sxg=u v dxgut+Szg zt)).

Since the formula Vxq1 ...Vx, (Elxo t+Szog =u v dxg utSxy = t) belongs to 3, we
have

O Rob.+I%Y + Vi ...Ya, ((on t+Szg=u v 3zgutSzg=1) — Iz Borooion (zo, "(Fz0 t+Sx0 = u Jzo u+Sxo H‘))

then, from the “code” of a “proof” of (Elxo t+Sxg=u v dxg ut+Sze = t) we recover
the “code” of a “proof” of t # u.
O

We finally have everything we need in order to prove:

Theorem 4.1: Gédel’s 2™ incompleteness theorem

If T 2 Rob.+ 1% is any consistent recursive theory, then

T t£ cons(T).

Proof of Theorem

Follows immediately from Lemmas and[4.6. Because the condition required by Lemma
[3.1] on a theory T = Rob. to satisfy the conditions of the second incompleteness theorem
was that

T b B =) = 301G, (1 [ Z =00 1) -

And it turns out that the formula - =1/y,] is both closed and N0 since it is

/o
Jz1 3z9 (gppme(xl,wg) A Sodiag(.%'Q,[rﬁE—'—l))

where both ¢, (21, 22) and Qgiag(w2, [ ~=']) are formulas that represent primitive recur-

sive relations, hence 9.

O

Godel second incompleteness Theorem yields some strange consequence.
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Corollary 4.2

Let T 2 Rob.+IXY be any recursive theory.
T is consistent

—

there exists M 's. t. M =T U {EI';' (3zo Boroosp( 0, ©1) A FT0 B, (20, ﬁf))}

Proof of Corollary E

(=) If T 2 Rob.+IXY is any consistent recursive theory, then T £, cons(T) holds by
Theorem . But by the completeness theorem, this is equivalent to T & cons(T)
which means that there exists some model M such that M =T and M ¥ cons(T).
Therefore, M |= —cons(T), hence

M =3 (3m Brroor (T0s 0) A 320 B, (X0, ).

(<) is immediate.
O

Notice that the model M in C’orollary cannot be the standard model (N) otherwise we would

have
N ’: HI \;I (axo gpproofrz—‘(m.o7 IVSI) A on cpp'mofT(xO’ Iﬁgl) )
Because, otherwise we would get standard integers that code both a proof of some formula ¢ and

a proof of =, hence from these standard integers we would be able to recover both a proof of ¢
and a proof of —p, which would lead to a proof of L.

So M is some non-standard model which contains two integers (necessarily at least one of them is
non-standard) v, and r—, which code a proof of ¢ from T and a proof of —¢ from T, respectively.
Then, of course, from both r, and r—, one may easily construct an integer r| which codes a
proof of L from T'. However, since r| is some non-standard integer, it does not help in providing
a proof of a contradiction from T.

Notice also that given any consistent recursive theory T 2 Rob.+1%Y, it is easy to find some
consistent recursive extension T' of T that satisfies T' +, cons(T). This can be done, for
instance, by simply taking T' = T U cons(T). Indeed, T" is clearly recursive, and it is consistent
because

T,cons(T) L <= T+ —cons(T) <= THr L.

By induction on n € N, we construct a family (T),)nen of theories ordered by inclusion:
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o Thny1 =Ty, v {cons(T),)}.

Clearly, every theory T, is both consistent and recursive. To see that it is consistent, we proceed
by induction. Assuming that T, is consistent, it follows that if Ty11 is inconsistent, then we

have
Th,cons(Ty) L1 << T,k —cons(T),) <= T, L.

Now we have for each integer n:

Thi1 b ocons(Ty)  but  Tpiq ta cons(Thi1).

Let T, be the theory T,, = UT”’ T, is consistent since otherwise, by compactness T,, - L would

neN
yield Ty, + L for some large enough integer n.

We see that this procedure can be extended all along the recursive countable ordinals.
Definition 4.2

A countable ordinal « is recursive if there exists some well ordering (N, <) such that
(1) {(a,b) e Nx N |a < b} is recursive, and

(2) « is order-isomorphic to (N, <).

It is not difficult to show that the class of recursive ordinals is some countable initial segment of
the class of all ordinals. This justifies the following definition.

Definition 4.3

The Church-Kleene ordinal w{® is the least ordinal which is not recursive.

Since there are only countably many recursive subsets of N x N, it follows that w{* < w;.

o TO =T
0 Tay1 =Ta v {cons(Ty)}.

o T\ = UTO‘ (A limit and A < w{*¥).

a<A
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To show that every Ty, is consistent (any o < w{™), it remains to show that Ty is consistent
when A is a limit ordinal. This is immediate, since

T\ = U T, and T\ + L implies T, + L holds for some o < A.

a<

It follows that every T, is consistent and does not prove its own consistency, but the consistency
of all T for B < a.
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