
Chapter 6

Gödel’s 2nd Incompleteness Theorem

6.1 Peano Arithmetic and I!0
1

To prove Gödel’s 2nd incompleteness theorem we need to work in a theory slightly more expressive
than Rob. but nevertheless much less expressive than the theory of Peano arithmetic that we now
introduce.

Definition 1.1: Peano arithmetic

Peano arithmetic is a theory based on the same language as Robinson arithmetic : LA “

t0, S, `, ¨u. But contrary to Robinson arithmetic, it has infinitely many axioms:

axiom 1. @x Sx ‰ 0

axiom 2. @x Dy px ‰ 0 Ñ Sy “ xq

axiom 3. @x @y pSx “ Sy Ñ x “ yq

axiom 4. @x x`0 “ x

axiom 5. @x @y
´
x`Sy “ Spx`yq

¯

axiom 6. @x x¨0 “ 0

axiom 7. @x @y
´
x¨Sy “ px¨yq`x

¯

axiom schema (induction) for any formula ωrx0,x1,...,xns
a,

@x1 . . . @xn

ˆ´
ωr0{x0,x1,...,xns ^ @x0

`
ωrx0,x1,...,xns Ñ ωrSx0{x0,x1,...,xns

˘¯
Ñ @x0 ωrx0,x1,...,xns

˙

a
the notation ωrx0,x1,...,xns means that the free variable of ω are all among x0, x1, . . . , xn.
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So we see that Peano is nothing but Rob. augmented with the induction schema for all formulas
constructed on the language of arithmetic. In fact we will not need to work within Peano but
only a fragment of it obtained by restricting the induction schema to the sole !0

1-formulas (see
next section). This theory is called Rob.`I!0

1

Example 1.1

We saw that Rob. does not prove that the addition is commutative. We want to prove,
here, that within Rob.`I!0

1 the addition becomes commutative. For this purpose we make
use of several instances of the induction schema.

(1) We first show that
Rob.`I!0

1 $c @x x`0 “ 0`x.

Indeed we have both

˝ $c 0`0 “ 0`0

˝ Rob. $c @x
´`

x`0 “ 0`x
˘

Ñ
`
Sx`0 “ 0`Sx

˘¯
because we have by

4 @x x`0 “ x and 5 @x @y
`
x`Sy “ Spx`yq

˘

Rob. $c Sx`0 “ Sx ^ 0`Sx “ Sp0`xq

hence

Rob., x`0 “ 0`x $c Sx`0 “ Sx ^ 0`Sx “ Spx`0q ^ Spx`0q “ Sx

So by applying the induction schema to the ”0
0-formula x`0 “ 0`x we obtain the

result.

(2) We then show that

Rob.`I!0
1 $c @x @y x`Sy “ Sx`y.

Indeed we have both

˝ Rob. $c @x x`S0 “ Sx`0 by

4 @x x`0 “ x and 5 @x @y
`
x`Sy “ Spx`yq

˘
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˝ Rob. $c @x
´`

x`Sy “ Sx`y
˘

Ñ
`
x`SSy “ Sx`Sy

˘¯
because we have by

5 @x @y
`
x`Sy “ Spx`yq

˘

Rob. $c x`SSy “ Spx`Syq

hence

Rob., x`Sy “ Sx`y $c Spx`Syq “ SpSx`yq “ Sx`Sy.

So by applying the induction schema to the ”0
0-formula x`Sy “ Sx`y we obtain the

result.

(3) Finally we show that

Rob.`I!0
1 $c @x @y x`y “ y`x.

Indeed we have both

˝ Rob.`I!0
1 $c @x x`0 “ 0`x for this was what we established in case (1).

˝ Rob. $c @x
´`

x`y “ y`x
˘

Ñ
`
x`Sy “ Sy`x

˘¯
because by

5 @x @y
`
x`Sy “ Spx`yq

˘

we have

Rob., x`y “ y`x $c x`Sy “ Spx`yq “ Spy`xq “ y`Sx

hence by applying case (2) we obtain

Rob.`I!0
1, x`y “ y`x $c x`Sy “ Sy`x.

So, in the end, by applying the induction schema to the ”0
0-formula x`y “ y`x we

obtain the result.

Example 1.2

We saw that Rob. proves that every integer (standard or non-standard) is always comparable
with any standard integer:

4.11 Rob. $c @x
`
x ! n _ n ! x

˘
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Now we establish that Rob.`I!0
1 proves that any two integers are always comparable:

Rob.`I!0
1 $c @x @y

`
x ! y _ y ! x

˘
.

We recall that x ! y stands for Dz z`x “ y. So we consider the instance of the axiom
schema for the !0

1-formula

ωrx, ys :“ Dz z`x “ y _ Dz z`y “ x.

@y

¨

˚̋

¨

˚̋

`
Dz z`0 “ y _ Dz z`y “ 0

˘

^

@x
´`

Dz z`x “ y _ Dz z`y “ x
˘

Ñ
`
Dz z`Sx “ y _ Dz z`y “ Sx

˘¯

˛

‹‚Ñ @x

¨

˝
Dz z`x “ y

_

Dz z`y “ x

˛

‚

˛

‹‚

(1) By 4 @x x`0 “ x have

Rob. $c Dz z`0 “ y

which takes care of the first part: Dz z`0 “ y _ Dz z`y “ 0.

(2) For the second part we need to distinguish between two cases:

if Dz z`y “ x we distinguish between z “ 0 and z ‰ 0

if 0`y “ x by Example 1.1, we have

Rob.`I!0
1 $c 0`y “ x Ñ x “ y

and
Rob.`I!0

1 $c x “ y Ñ S0`y “ 0`Sy “ Sy “ Sx

if Dz ‰ 0 z`x “ y then

Rob., Dz ‰ 0 z`x “ y $c Dz1 Sz1
`x “ y

By Example 1.1, we obtain what we need:

Rob.`I!0
1, Dz ‰ 0 z`x “ y $c Dz1 z1

`Sx “ y

if Dz z`x “ y By 5 @x @y
`
x`Sy “ Spx`yq

˘
we have

Rob., z`x “ y $c Spz`yq “ z`Sy “ Sx
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and by Example 1.1, we have

Rob.`I!0
1 $c z`Sy “ Sx Ñ Sz`y “ Sx

which gives the result we need:

Rob.`I!0
1, Dz z`x “ y $c Dz z`y “ Sx

So, in the end, by applying the induction schema to the !0
1-formula

ωrx, ys :“ Dz z`x “ y _ Dz z`y “ x

we obtain the result.

Example 1.3

We saw that Rob. does not prove that the addition is associative. We show here that
Rob.`I!0

1 proves that the addition is associative:

Rob.`I!0
1 $c @x @y @z px`yq`z “ x`py`zq.

(1) We first show that

Rob. $c @x @y px`yq`0 “ x`py`0q.

Indeed by 4 @x x`0 “ x we have

Rob. $c px`yq`0 “ x`y “ x`py`0q.

(2) We then show that

Rob. $c @x @y @z
´

px`yq`z “ x`py`zq

¯
Ñ

´
px`yq`Sz “ x`py`Szq

¯
.

by 5 @x @y
`
x`Sy “ Spx`yq

˘
we have

Rob. $c px`yq`Sz “ S
`
px`yq`z

˘

and also
Rob. $c S

`
x`py`zq

˘
“ x`Spy`zq “ x`py`Szq

therefore we obtain

Rob., px`yq`z “ x`py`zq $c px`yq`Sz “ x`py`Szq.
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(3) Finally, by applying the induction schema to the ”0
0-formula px`yq`z “ x`py`zq

we obtain the result.

Example 1.4

We saw that Rob. does not prove that the multiplication is commutative. We show here
Rob.`I!0

1 proves that the addition is commutative.

(1) We first show that
Rob.`I!0

1 $c @x x¨0 “ 0¨x.

Indeed we have both

˝ $c 0¨0 “ 0¨0

˝ Rob. $c @x
´`

x¨0 “ 0¨x
˘

Ñ
`
Sx¨0 “ 0¨Sx

˘¯
because we have by

6 @x x¨0 “ 0 and 7 @x @y
`
x¨Sy “ px¨yq`x

˘

Rob. $c Sx¨0 “ 0 ^ 0¨Sx “ p0¨xq`0

hence
Rob., x¨0 “ 0¨x $c Sx¨0 “ 0 “ 0`0 “ p0¨xq`0.

So by applying the induction schema to the ”0
0-formula x¨0 “ 0¨x we obtain the result.

(2) We then show that

Rob.`I!0
1 $c @x @y Sx¨y “ px¨yq`y.

Indeed we have both

˝ Rob. $c @x Sx¨0 “ px¨0q`0 by a simple application of

4 @x x`0 “ x and 6 @x x¨0 “ 0

˝ Rob. $c @x
´`

Sx¨y “ px¨yq`y
˘

Ñ
`
Sx¨Sy “ px¨Syq`Sy

˘¯
because we have by

7 @x @y
`
x¨Sy “ px¨yq`x

˘

Rob. $c Sx¨Sy “ pSx¨yq`Sx
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hence
Rob., Sx¨y “ px¨yq`y $c Sx¨Sy “

`
px¨yq`y

˘
`Sx.

but we also know that the addition is associative and commutative, thus we have

Rob.`I!0
1 $c x¨y`

`
y`Sx

˘
“ x¨y`

`
y`Sx

˘
“ x¨y`

`
Sy`x

˘

and

Rob.`I!0
1 $c x¨y`

`
Sy`x

˘
“ x¨y`

`
x`Sy

˘
“

`
x¨y`x

˘
`Sy “ x¨Sy`Sy.

So by applying the induction schema to the ”0
0-formula Sx¨y “ px¨yq`y we obtain

the result.

(3) Finally we show that
Rob.`I!0

1 $c @x @y x¨y “ y¨x.

Indeed we have both

˝ Rob.`I!0
1 $c @x x¨0 “ 0¨x for this was what we established in case (1).

˝ Rob.`I!0
1 $c @x

´`
x¨y “ y¨x

˘
Ñ

`
x¨Sy “ Sy¨x

˘¯
because by

7 @x @y
`
x¨Sy “ px¨yq`x

˘

we have
Rob., x¨y “ y¨x $c x¨Sy “ px¨yq`x “ py¨xq`x

by case (2) we have

Rob.`I!0
1 $c py¨xq`x “ Sy¨x

which leads to
Rob.`I!0

1, x¨y “ y¨x $c x¨Sy “ Sy¨x

So, in the end, by applying the induction schema to the ”0
0-formula x¨y “ y¨x we

obtain the result.

Example 1.5

We show here that Rob.`I!0
1 proves that the multiplication distributes over the addition:

Rob.`I!0
1 $c @x @y @z x¨py`zq “ px¨yq`px¨zq.
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(1) We first show that

Rob. $c @x @y x¨py`0q “ px¨yq`px¨0q.

which is immediate by

4 @x x`0 “ x and 6 @x x¨0 “ 0

(2) We then show that

Rob.`I!0
1 $c @x @y @z

´
x¨py`zq “ px¨yq`px¨zq

¯
Ñ

´
x¨py`Szq “ px¨yq`px¨Szq

¯
.

by 7 @x @y
`
x¨Sy “ px¨yq`x

˘
we have

Rob. $c px¨yq`px¨Szq “ px¨yq`
`
px¨zq`x

˘

and
Rob.`I!0

1 $c px¨yq`
`
px¨zq`x

˘
“

`
px¨yq`px¨zq

˘
`x

So that we obtain

Rob.`I!0
1, x¨py`zq “ px¨yq`px¨zq $c px¨yq`px¨Szq “

`
x¨py`zq

˘
`x.

At last, by

5 @x @y
`
x`Sy “ Spx`yq

˘
and 7 @x @y

`
x¨Sy “ px¨yq`x

˘

we have
Rob. $c

`
x¨py`zq

˘
`x “

`
x¨Spy`zq

˘
“

`
x¨py`Szq

˘

which terminates this proof.

(3) Finally, by applying the induction schema to the ”0
0-formula x¨py`zq “ px¨yq`px¨zq

we obtain the result.
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Example 1.6

We show that Rob.`I!0
1 proves that the multiplication is associative:

Rob.`I!0
1 $c @x @y @z px¨yq¨z “ x¨py¨zq.

(1) We first show that
Rob. $c @x @y px¨yq¨0 “ x¨py¨0q.
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Indeed by 6 @x x¨0 “ 0 we have

Rob. $c px¨yq¨0 “ 0

and
Rob. $c x¨py¨0q “ x¨0 “ 0

(2) We then show that

Rob. $c @x @y @z
`
px¨yq¨z “ x¨py¨zq

˘
Ñ

`
px¨yq¨Sz “ x¨py¨Szq

˘
.

by 7 @x @y
`
x¨Sy “ px¨yq`x

˘
we have

Rob. $c x¨py¨Szq “ x¨
`
py¨zq`y

˘

and by Example 1.5 we also have

Rob.`I!0
1 $c x¨

`
py¨zq`y

˘
“

`
x¨py¨zq

˘
`px¨yq

so that we obtain

Rob.`I!0
1 , px¨yq¨z “ x¨py¨zq $c

`
x¨py¨zq

˘
`px¨yq “

`
px¨yq¨z

˘
`px¨yq “ px¨yq¨Sz

which gives the result.

(3) Finally, by applying the induction schema to the ”0
0-formula px¨yq¨z “ x¨py¨zq we

obtain the result.

Proposition 1.1

The theory Rob.`I!0
1 proves that

(1) ` is commutative;

(2) ` is associative;

(3) ¨ is commutative;

(4) ¨ is associative;

(5) ¨ distributes over `.
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Proof of Proposition 1.1:

(1) “` is commutative ” is Example 1.1,

(2) “` is associative ” is Example 1.3,

(3) “ ¨ is commutative ” is Example 1.4,

(4) “ ¨ is associative ” is Example 1.6,

(5) “ ¨ distributes over ` ” is Example 1.5.

6.2 The Arithmetical Hierarchy

For the purpose of defining the arithmetical hierarchy we add a binary symbol “ " ” to our
language but essentially for the purpose of denoting bounded formulas such as Dy ! t ω and
@y ! t ω. In a sense, this di!ers from the use of this same symbol inside Robinson arithmetic
(see page 114) where it was an abbreviation for “ Dy

`
y`x “ z ^ x ‰ z

˘
”. For the reason that

in what follows we will have

˝ “ Dy
`
y`x “ z ^ x ‰ z

˘
” is a !0

1-formula, and

˝ “ Dx ! z x ‰ z ” is a ”0
0-formula.

We will be working with Rob.`I!0
1 so for every x and y we will have both

x ! y _ y ! x

and
Dz z`x “ y #ñ Dz x`z “ y.

Definition 2.1: ”0
0-formulas

The set of ”0
0-formulas is the least that

(1) contains all atomic formulas: t0 “ t1

(2) is closed under conjunctions, disjunctions and negations

(3) is closed under bounded quantifications. i.e.,
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if ω P ”0
0 and t is a term, then both formulas “ @x " t ω ” and “ Dx " t ω ” belong to

”0
0.

Definition 2.2: arithmetical hierarchy

The hierarchy of formulas from arithmetic is defined by induction on n P N:

(1) !0
0 “ #0

0 “ ”0
0

(2) !0
n`1 is the set of all formulas that are (logically equivalent to formulas of) the form

Dx1 . . . Dxk ω where ω P #0
n.

(3) #0
n`1 is the set of all formulas that are (logically equivalent to formulas of) the form

@x1 . . . @xk ω where ω P !0
n.

(4) ”0
n`1 “ !0

n`1 X #0
n`1

Notice that all the classes defined above are closed under (finite) conjunctions and disjonctions.

Example 2.1

(1) x0 " Spx2¨Sx1q $Ñ @y ! x3 y`x0 “ x3 P ”0
0

(2) @x @y
´
x¨Sy “ px¨yq`x

¯
P #0

1

(3) @x Dy px ‰ 0 Ñ Sy “ xq P #0
2

Proposition 2.1

Given any n P N and any !0
1-formula ω :“ Dx0 Dx1 . . . Dxnε where ε is ”0

0,
there exists some ”0

0-formula ε1 such that

Rob. $c Dx0 Dx1 . . . Dxnε %Ñ Dxε1.

Proof of Proposition 2.1:
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We set

ε1
“ Dx0 ! x Dx1 ! x . . . Dxn ! x

´
ϑn`1

`
x0, x1, . . . , xn

˘
“ x ^ ε

¯

where ϑn`1

`
x0, x1, . . . , xn

˘
“ x denotes the ”0

0-formula defined by induction on n & 0 by

˝ “ϑ2

`
x0, x1

˘
“ x ” is “ Dy ! x px0`x1q¨px0`x1`S0q “ y`y ^ y`x1 “ x ”

˝ “ϑn`1

`
x0, x1, . . . , xn

˘
“ x ” is “ Dz ! x

´
ϑ2

`
x0, x1

˘
“ z ^ ϑn

`
x0, x1, . . . , xn´1, z

˘
“

x
¯
”.

Proposition 2.2

Given any n, k1, . . . , kn P N and any !0
n`1-formula and #0

n`1-formula respectively

ω :“ Dxn
1 Dxn

2 . . . Dxn
kn@xn´1

1 . . . @xn´1
kn´1

Dxn´2
1 . . . D

n´2
kn´2

@xn´3
1 . . . . . . Qx1

1 . . . Qx1
k1 ε

where Q is either @ or D depending on the parity of n, and ε is ”0
0, and

ϖ :“ @xn
1 @xn

2 . . . @xn
knDxn´1

1 . . . Dxn´1
kn´1

@xn´2
1 . . . @xn´2

kn´2
Dxn´3

1 . . . . . . Q̄x1
1 . . . Q̄x1

k1 ϱ

where Q̄ is either @ or D depending on the parity of n, and ϱ is ”0
0,

there exists ”0
0-formulas ε1 and ϱ1 such that

˝ Rob. $c ω %Ñ Dyn @yn´1 Dyn´2 . . . Qy1ε1, and

˝ Rob. $c ϖ %Ñ @yn Dyn´1 @yn´2 . . . Q̄y1ϱ1.

Proof of Proposition 2.2:

This is an easy exercise based on the same idea as the one used to prove Proposition 2.1.

From now on, $ stands for any of the classes !0
n`1, #0

n`1, ”0
n (any n P N).

Proposition 2.3

Given any formula ε,
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˝ $c Dy ! x Dz ε %Ñ Dz Dy ! x ε

˝ $c @y ! x @z ε %Ñ @z @y ! x ε

Proof of Proposition 2.3:

Immediate.

Proposition 2.4

Given any n P N, any term t that does not contain the variable z, and any formula ε P $
there exists ε1

P $,

(1) Rob. $c Dy ! t @z ε %Ñ @z Dy ! t ε1

(2) Rob. $c @y ! t Dz ε %Ñ Dz @y ! t ε1.

Proof of Proposition 2.4:

(1) The idea is to have z encode a sequence of t many integers, and to consider all such
sequences. For this we set

ε1
“

´
ωωpx0, y, z1, z ”q ^ εrx0{zs

¯

where ωωpx0, y, z1, z ”q represents the primitive recursive ς-function that was intro-
duced on page 124 in the proof of Lemma 2.4 as a consequence of the Chinese Re-
mainder Theorem (page 123).

Indeed, on Lemma 2.4 on page 124 we proved that there exists some function ς P NpN3
q

which is both representable and Prim. Rec. such that for all k P N and every sequence
n0, n1, . . . , nk there exist a, b P N such that

$
’’’&

’’’%

ςp0, a, bq “ n0

ςp1, a, bq “ n1
...

ςpk, a, bq “ nk.

We recall that ωωpx0, y, z1, z ”q stands for

x0 " Spz1
¨Syq ^ Dϖ ! z2

´
ϖ¨Spz1

¨Syq

¯
`x0 “ z2
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so that we obtain

Rob. $c Dy ! t @z ε %Ñ @z1
@z2

Dy ! t ε1

from where we apply Proposition 2.2 to get the result.

(2) Mutatis mutandis, the same idea works fine.

We are now able to state a stronger version of Theorem 2.2:

Theorem 2.1

Every total recursive function is representable by some !0
1-formula.

Proof of Theorem 2.1:

It is enough to go through the proofs of Examples 2.1, 2.2, 2.3 and Lemmas 2.1 , 2.3, 2.5,
and notice that all formulas we defined were !0

1-formulas.

6.3 A First Glance at Gödel’s 2nd Incompleteness Theorem

We first recall that by Theorem 3.1 the set below is

!`
xP y, xωy

˘
P N2

| P is a proof of T $c ω
)

˝ primitive recursive if T is primitive recursive,

˝ recursive if T is recursive.

We consider any recursive theory T ’ Rob. and consider some !0
1-formula ωproofT

px1, x2q which
represents the set above. This means that for all i1, i2 P N we have:

˝ if pi1, i2q P

!`
xP y, xωy

˘
P N2

| P is a proof of T $c ω
)
, then Rob. $c ωproofT

pi1, i2q;

˝ if pi1, i2q R

!`
xP y, xωy

˘
P N2

| P is a proof of T $c ω
)
, then Rob. $c (ωproofT

pi1, i2q.

so in particular if T is consistent, we have
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P is a proof of T $c ω #ñ Rob. $c ωproofT
prxP ys, rxωysq.

We consider the following primitive recursive function diag : N $Ñ N.

diagpnq “

#
xωrrxεys{x0sy if n “ xωy P F✁x0 !free

0 otherwise

together with any !0
1-formula ωdiagpx0, x1q that represents diag. This means we have

for all n P N
Rob. $c @x0

´
diagpnq “ x0 %Ñ ωdiagpx0, nq

¯
.

We define the !0
1-formula % px0q by

% px0q :“ Dx1 Dx2

`
ωproofT

px1, x2q ^ ωdiagpx2, x0q
˘
.

Proposition 3.1

For every integer n we have

N |ù % pnq #ñ Rob. $c % pnq .

Proof of Proposition 3.1:

(1) if n “ xωy P F✁x0 !free
and there is a proof P of T $c ωrrxεys{x0s we have both

Rob. $c ωdiagprxωrrxεys{x0sys, nq

and
Rob. $c ωproofT

`
rxP ys, rxωrrxεys{x0sys

˘

therefore
Rob. $c Dx1 Dx2

`
ωproofT

px1, x2q ^ ωdiagpx2, nq
˘

which is
Rob. $c % pnq .

(2) if n “ xωy P F✁x0 !free
and there is no proof P of T $c ωrrxεys{x0s we have for all proofs

P
Rob. $c @x2

´
ωdiagpx2, nq %Ñ x2 “ rxωrrxεys{x0sys

¯

and
Rob. $c (ωproofT

`
rxP ys, rxωrrxεys{x0sys

˘
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and furthermore for every integer i

Rob. $c (ωproofT

`
i, rxωrrxεys{x0sys

˘

therefore, since N |ù ωRob., by the soundness theorem we have

Rob. &c % pnq .

(3) if n R F✁x0 !free
, then for every integer i1,

Rob. $c (ωproofT
pi1, diagpnqq

for the reason that for all integer i1

pi1, 0q R

!`
xP y, xωy

˘
P N2

| P is a proof of T $c ω
)

because 0 is never the code of a formula. Hence, by application of the soundness
theorem we have

Rob. &c % pnq .

So to speak, N |ù % pnq asserts:

“n is an integer that codes some formula ωi and there exists a proof that there is a 1 on
position pi, iq in the array below ”.

ω0 ω1 ω2 ω3 ω4 ω5 ωn

xω0y 0 1 1 0 1 0 . . . 0 . . .

xω1y 1 1 1 0 0 0 . . . 0 . . .

xω2y 1 0 1 0 0 0 . . . 1 . . .

xω3y 0 0 1 0 1 0 . . . 0 . . .

xω4y 0 1 0 1 1 1 . . . 0 . . .

xω5y 1 1 0 0 0 0 . . . 0 . . .

...
...

...
...

...
...

...
...

xωny 1 0 0 0 1 1 . . . 1 . . .
...

...
...

...
...

...
...

...

There is a 1 on the array – for instance on row 3 and column 2 – if T $c ω2prxω3ysq, and there
is a 0 – for instance on row 2 and column 5 – if T &c ω5prxω2ysq.
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We now consider

(1) the formula (% px0q (that we write (% to lighten the writing);

(2) the term that represents its code: x(%y;

(3) the term that represents the code of the formula (% px0q that “ eats ” its own code: x(%rrx!!ys{x0sy.

Claim 3.1

Rob. $c %rrx!!ys{x0s %Ñ Dx1ωproofT

`
x1, rx(%rrx!!ys{x0sys

˘

which is precisely

Rob. $c Dx1 Dx2

`
ωproofT

px1, x2q ^ ωdiagpx2, rx(%ysq
˘

%Ñ Dx1ωproofT

`
x1, rx(%rrx!!ys{x0sys

˘
.

Proof of Claim 3.1:

(#) By the very definition of the function diag and that ωdiag represents that function we
have

Rob. $c ωdiagprx(%rrx!!ys{x0sys, rx(%ysq
˘

thus

Rob. $c Dx1ωproofT

`
x1, rx(%rrx!!ys{x0sys

˘
$Ñ Dx1 Dx2

`
ωproofT

px1, x2q ^ ωdiagpx2, rx(%ysq
˘
.

(ñ) Since ωdiag represents the function diag we have

Rob. $c @x2

´
ωdiagpx2, rx(%ysq

˘
%Ñ x2 “ rx(%rrx!!ys{x0sys

¯

therefore

Rob. $c Dx1 Dx2

`
ωproofT

px1, x2q ^ ωdiagpx2, rx(%ysq
˘

Ñ Dx1ωproofT

`
x1, rx(%rrx!!ys{x0sys

˘
.

Claim 3.2

T &c (%rrx!!ys{x0s.
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Proof of Claim 3.2:

Towards a contradiction, we assume that

T $c (%rrx!!ys{x0s.

It follows that there exists an integer xP y such that

`
xP y , rx(%rrx!!ys{x0sys

˘
P

!`
xQy, xωy

˘
P N2

| Q is a proof of T $c ω
)
.

Therefore, since ωproofT
represents the set above, we have

Rob. $c ωproofT

`
rxP ys, rx(%rrx!!ys{x0sys

˘

and by Claim 3.1 we obtain
Rob. $c %rrx!!ys{x0s.

Since Rob. ) T we obtain
T $c %rrx!!ys{x0s

which contradicts the fact that T is consistent for we obtain both

T $c %rrx!!ys{x0s and T $c (%rrx!!ys{x0s.

Claim 3.3

Rob.,

%rrx!!ys{x0s $Ñ Dx1ωproofRob.

`
x1, rx%rrx!!ys{x0sys

˘
+

$c %rrx!!ys{x0s $Ñ (conspT q.

Where (conspT q stands for the following formula:

Dxωy
`
Dx0 ωproofT

px0, xωyq ^ Dx0 ωproofT
px0, x(ωyq

˘
.

(We recall that we write Dxωy . . . for “ Dx
`
ωFpxq ^ . . . ”.)

Proof of Claim 3.3:

From Claim 3.1 we obtain

Rob. $c %rrx!!ys{x0s Ñ Dx1ωproofT

`
x1, rx(%rrx!!ys{x0sys

˘
.
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Thus we have both

˝ %rrx!!ys{x0s Ñ Dx1ωproofRob.

`
x1, rx%rrx!!ys{x0sys

˘
$c %rrx!!ys{x0s Ñ Dx1ωproofRob.

`
x1, rx%rrx!!ys{x0sys

˘

˝ Rob. $c %rrx!!ys{x0s Ñ Dx1ωproofT

`
x1, rx(%rrx!!ys{x0sys

˘

which leads to

Rob.,

%rrx!!ys{x0s Ñ Dx1ωproofRob.

`
x1, rx%rrx!!ys{x0sys

˘
+

$c %rrx!!ys{x0s Ñ

¨

˚̊
˝

Dx1 ωproofRob.

`
x1, rx%rrx!!ys{x0sys

˘

!

Dx1 ωproofT

`
x1, rx(%rrx!!ys{x0sys

˘

˛

‹‹‚

By the very definition a of ωproofT
and ωproofRob.

we have

˝ Rob. $c @x0 @x1

`
ωproofRob.

px0, x1q $Ñ ωproofT
px0, x1q

˘
.

Therefore we obtain

Rob.,

%rrx!!ys{x0s Ñ Dx1ωproofRob.

`
x1, rx%rrx!!ys{x0sys

˘
+

$c %rrx!!ys{x0s Ñ

¨

˚̊
˝

Dx1 ωproofT

`
x1, rx%rrx!!ys{x0sys

˘

!

Dx1 ωproofT

`
x1, rx(%rrx!!ys{x0sys

˘

˛

‹‹‚

which yields the result.

a
This means: if we choose wisely the !

0
1-formulas ωproofT

and ωproofRob.
that represent the two recursive

sets

!`
xP y, xωy

˘ P N2 | P is a proof of T $c ω
)

and

!`
xP y, xωy

˘ P N2 | P is a proof of Rob. $c ω
)
.

Lemma 3.1

Let T ’ Rob. be any consistent recursive theory.
If

T $c %rrx!!ys{x0s $Ñ Dx1ωproofRob.

`
x1, rx%rrx!!ys{x0sys

˘
,

then
T &c conspT q.

Proof of Lemma 3.1:

Follows immediately from Claims 3.2 and 3.3.
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So we are left with the problem of characterising the consistent theories that both extend Robinson
arithmetic and prove this very strange formula:

%rrx!!ys{x0s $Ñ Dx1ωproofRob.

`
x1, rx%rrx!!ys{x0sys

˘
.

Ultimately we will show that Rob.`I!0
1 is a good candidate. Indeed, we will show

Rob.`I!0
1 $c %rrx!!ys{x0s $Ñ Dx1ωproofRob.

`
x1, rx%rrx!!ys{x0sys

˘
.

In order to show that this result holds — and because it can easily be seen that the formula
%rrx!!ys{x0s is !0

1 — we will rather show that the following result holds for every !0
1-formula :

Rob.`I!0
1 $c ω $Ñ Dx1ωproofRob.

px1, xωyq .

6.4 The Core of the Proof

We are going to prove that given any closed !0
1-formula ω, the following holds:

Rob.`I!0
1 $c ω $Ñ Dx1ωproofRob.

px1, xωyq .

There are two di!erent misapprehensions that one must avoid:

(1) The assumption that ω is some closed !0
1-formula is crucial. Indeed, the result does not

hold for any closed formula, not even closed #0
1-formula. Indeed, we saw in Example 1.4

that Rob.`I!0
1 proves the commutativity of the multiplication. We also saw in Example

1.2 that there exists some model of Rob. that does not satisfy the commutativity of the
multiplication, hence, we have both

˝ Rob.`I!0
1 $c @x @y x¨y “ y¨x ˝ Rob. &c @x @y x¨y “ y¨x.

So, if Lemma 4.6 were to hold for #0
1-formulas, then we would have

Rob.`I!0
1 $c Dx1ωproofRob.

px1, x@x @y x¨y “ y¨xyq .

Hence, by the completeness theorem, we would also have

Rob.`I!0
1 |ù Dx1ωproofRob.

px1, x@x @y x¨y “ y¨xyq ;

and in particular
N |ù Dx1ωproofRob.

px1, x@x @y x¨y “ y¨xyq .

But from an integer that codes a proof of the formula @x @y x¨y “ y¨x from Rob., we
would get a proof of the sequent Rob. $ @x @y x¨y “ y¨x, contradicting the fact that
Rob. &c @x @y x¨y “ y¨x.
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(2) At first glance, one may think that

Rob.`I!0
1 $c ω $Ñ Dx1ωproofRob.

px1, xωyq (6.1)

is equivalent to

Rob.`I!0
1 $c ω ùñ Rob.`I!0

1 $c Dx1ωproofRob.
px1, xωyq . (6.2)

To see this, notice that when Rob.`I!0
1 &c ω holds, then 6.2 trivially holds but 6.1 is far

more involved. Indeed,

˝ if Rob.`I!0
1 $c (ω, then proving 6.1 is easy since it is equivalent to proving

Rob.`I!0
1 $c (ω _ Dx1ωproofRob.

px1, xωyq .

˝ But if Rob.`I!0
1 &c (ω, then one must show 6.1 on the basis that Rob.`I!0

1 proves
neither ω nor (ω.

On our way to proving Lemma 4.6, we will prove 6.1 which will require the following result:

Proposition 4.1

Let ω be any closed !0
1-formula.

N |ù

´
ω %Ñ Dx1ωproofRob.

px1, xωyq
¯
.

Proof of Proposition 4.1:

we distinguish between the two directions of “%Ñ ”.

(%) We assume N |ù Dx1ωproofRob.
px1, xωyq. So, there exists some standard integer that

codes a proof of ω from Robinson arithmetic. From this standard integer, we recover
a proof of Rob. $ ω, which shows that ω holds in all models of Rob.. So, ω holds in
particular inside the standard model (N).

(Ñ) We assume N |ù ω. We then show, by induction on the height of ω,

N |ù Dx1ωproofRob.
px1, xωyq .

We can easilya show the following:

(1) for every closed terms t1 and t2,
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N |ù t1 “ t2 ñ N |ù Dx1ωproofRob.
px1, xt1 “ t2yq .

(This is done by induction on the height of t1 and t2.)

(2) For every closed ”0
0-formula ω,

N |ù ω ñ N |ù Dx1ωproofRob.
px1, xωyq .

This is done by induction on the height of ω with the following statement taking
care of bounded quantifications:

4.10 Rob. $c @x
“
x ! n %Ñ px “ 0 _ x “ S0 _ . . . _ x “ nq

‰
.

(3) for every closed !0
1-formula of the form Dx1 . . . Dxn ω where ω is some ”0

0-
formula,

N |ù Dx1 . . . Dxn ω ñ N |ù Dx1ωproofRob.
px1, xDx1 . . . Dxn ωyq .

This holds because

N |ù Dx1 . . . Dxn ω ùñ for some k1, . . . , kn P N, ωrk1{x1,...,kn{xns holds in N
ùñ N |ù ωrk1{x1,...,kn{xns

(by ind. hyp.) ùñ N |ù Dx1ωproofRob.

`
x1, xωrk1{x1,...,kn{xnsy

˘

ùñ N |ù Dx1ωproofRob.
px1, xDx1 . . . Dxn ωyq .

a
the whole proof involves many cases. It is tedious but straightforward.

This proposition yields an easy but amazing corollary. We mention a result about the Goldbach
conjecture, but the same remark holds for all conjectures in arithmetic that can be expressed by
some #0

1-formula.

Corollary 4.1

If the Goldbach conjecturea is neither provable nor disprovable, then it holds true in the
standard model N.

a
Goldbach conjecture is: “ every even integer strictly greater than 2 is the sum of two prime numbers ”.
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Proof of Corollary 4.1:

The Goldbach conjecture is some #0
1 statement. If the negation of the Goldbach conjecture

were true in N, then by Proposition 4.1 it would be provable.

We introduce a few definitions in order to characterize the models of Rob. as final extensions of
the standard model of arithmetic.

Definition 4.1

Let M and N be two models of Rob., such that M is a substructure a of N .

N is a final extension of M

#ñ

for every a P |M| and b P |N | we have both

˝ if N |ù b ! a, then b P |M| ˝ if b R |M|, then N |ù a ! b.
a
M is a substructure of N i”

˝ |M| ! |N |
˝ for every constant symbol c: cM “ cN

˝ for every function symbol f whose arity is n: fM “ fN æ |M|n

˝ for every relation symbol R whose arity is n: RM “ RN X |M|n.

Lemma 4.1

If N is a model of Rob., then the substructure M whose domain is

|M| “ tnN
| n P Nu

is isomorphic to the standard model N.

Proof of Lemma 4.1:

Left as a very easy exercise.
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Lemma 4.2

Up to isomorphism, every model N of Rob. is a final extension of the standard model N.

Proof of Lemma 4.2:

The mapping f : N $Ñ |N | defined by fpnq “ nN is an injective homomorphism that
satisfies for every n P N and b P |N |:

(1)

N |ù b ! n ùñ N |ù b “ 0 _ b “ S0 _ . . . _ b “ n ùñ f´1
pbq P N.

This is by

4.10 Rob. $c @x
“
x ! n %Ñ px “ 0 _ x “ S0 _ . . . _ x “ nq

‰
.

(2)
b R f rNs ùñ N |ù n ! b.

This is by

4.11 Rob. $c @x
`
x ! n _ n ! x

˘

and

4.10 Rob. $c @x
“
x ! n %Ñ px “ 0 _ x “ S0 _ . . . _ x “ nq

‰
.

This shows that N is a final extension of its substructure induced by f rNs which is isomor-
phic to the standard model.

Now that we know that models of Robinson arithmetic are final extensions of the standard model,
we can prove the result that follows.

Lemma 4.3

Let ω be any closed !0
1-formula.

Rob.`I!0
1 $c ω ùñ Rob.`I!0

1 $c Dx1ωproofRob.
px1, xωyq .
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Proof of Lemma 4.3:

We make use of the completeness theorem and of the fact that the standard model (N) is a
model of Rob.`I!0

1.

(ñ) Since
Rob.`I!0

1 $c ω,

the formula ω holds in all models that satisfy Rob.`I!0
1. So in particular we have

N |ù ω.

By Proposition 4.1, this leads to

N |ù Dx1ωproofRob.
px1, xωyq .

Therefore, there exists some (standard integer) n that codes a proof of ω in Robinson
arithmetic. i.e.,

N |ù ωproofRob.
pn, xωyq .

Then, we consider any model M such that satisfies

M |ù Rob.`I!0
1.

From Lemma 4.2 M is a final extension of (a structure isomorphic to) N. Now,
ωproofRob.

pn, xωyq is some closed ”0
0-formula, all the various bounded quantifications

are bounded by (terms that depict) standard integers. From this fact, it is as usual
tedious but straightforward to show by induction on the height of ωproofRob.

pn, xωyq that

M |ù ωproofRob.
pn, xωyq .

From where we obtain
M |ù Dx1ωproofRob.

px1, xωyq .

(#) Since
Rob.`I!0

1 $c Dx1ωproofRob.
px1, xωyq

holds, we also have
N |ù Dx1ωproofRob.

px1, xωyq .

Therefore, there exists some (standard integer) n that codes a proof of ω from Rob..

N |ù ωproofRob.
pn, xωyq .
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Such a proof is also some proof of ω from the theory Rob.`I!0
1, which witnesses that

we have
Rob.`I!0

1 $c ω.

Before we come to the proof of Lemma 4.6 – which will immediately yield Gödel’s 2nd incom-
pleteness theorem – we need to take care of some humongous preliminary work.

Lemma 4.4

Let trx1,...,xns be any LA-term (where LA “ t0, S, `, ¨u).

Rob.`I!0
1 $c @x1 . . . @xn @xn`1

´
trx1,...,xns “ xn`1 Ñ Dx0 ωproofRob.

`
x0, xtrx1,...,xns “ xn`1y

˘ ¯
a.

a
Where xtrx1,...,xns “ xn`1y stands for the formula xtrxk1

,...,xkn s “ xkn`1 yrxx1y{xk1
,...,xxny{xkn ,xxn`1y{xkn`1

s
meaning that xtrxk1

,...,xkn s “ xkn`1 y is a formula whose n ` 1 (necessarily free) variables are

xk1 , . . . , xkn , xkn`1 and xtrx1,...,xns “ xn`1y is this term after the subsequent substitutions have taken place:

S
F
ub.

´
. . .SF

ub.

´
S

F
ub.

´
xtrxk1

,...,xkn s “ xkn`1 y, xx1y, k1
¯
, xx2y, k2

¯
, . . . , xxn`1y, kn`1

¯
.

Proof of Lemma 4.4:

We prove the result by induction on the height of the term trx1,...,xns.

htptq “ 0 we have three cases:

t “ 0 we need to show

Rob.`I!0
1 $c @xn`1

´
0 “ xn`1 $Ñ Dx0 ωproofRob.

px0, x0 “ xn`1yq
¯

which is

Rob.`I!0
1 $c @xn`1

´
0 ‰ xn`1 _ Dx0 ωproofRob.

px0, x0 “ xn`1yq
¯

which comes down to proving

Rob.`I!0
1 $c Dx0 ωproofRob.

px0, x0 “ 0yq
¯
.

The code of the following proof is just what is needed:

ax
0 “ 0 $ 0 “ 0

Ref
$ 0 “ 0
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t “ xn`1 we need to show

Rob.`I!0
1 $c @xn`1

´
xn`1 “ xn`1 $Ñ Dx0 ωproofRob.

px0, xxn`1 “ xn`1yq
¯

in which case the code of the following proof is what is needed

ax
xn`1 “ xn`1 $ xn`1 “ xn`1

Ref
$ xn`1 “ xn`1

t “ xi pi ‰ n ` 1q we need to show

Rob.`I!0
1 $c @xi @xn`1

´
xi “ xn`1 $Ñ Dx0 ωproofRob.

px0, xxi “ xn`1yq
¯

which is also

Rob.`I!0
1 $c @xi @xn`1

´
xi ‰ xn`1 _ Dx0 ωproofRob.

px0, xxi “ xiyq
¯

which comes down to proving

Rob.`I!0
1 $c @xi Dx0 ωproofRob.

px0, xxi “ xiyq .

in which case the code of the following proof is what is needed

ax
xi “ xi $ xi “ xi

Ref
$ xi “ xi

htptq “ k ` 1 we have three cases:

t “ Su We need to show

Rob.`I!0
1 $c @x1 . . . @xn @xn`1

´
Surx1,...,xns “ xn`1 Ñ Dx0 ωproofRob.

`
x0, xSurx1,...,xns “ xn`1y

˘ ¯
.

We proceed by induction on xn`1, which means we need to show

(1) Rob.`I!0
1 $c @x1 . . . @xn

´
Surx1,...,xns “ 0 $Ñ Dx0 ωproofRob.

`
x0, xSurx1,...,xns “ 0y

˘ ¯
.

The result follows immediately by 1 @x Sx ‰ 0 .

(2) And assuming that

Rob.`I!0
1 $c @x1 . . . @xn

´
Surx1,...,xns “ xn`1 $Ñ Dx0 ωproofRob.

`
x0, xSurx1,...,xns “ xn`1y

˘ ¯

holds, we need to show

Rob.`I!0
1 $c @x1 . . . @xn

´
Surx1,...,xns “ Sxn`1 $Ñ Dx0 ωproofRob.

`
x0, xSurx1,...,xns “ Sxn`1y

˘ ¯
.
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By 3 @x @y pSx “ Sy Ñ x “ yq together with the induction hypothesis

we obtain

Rob.`I!0
1 $c @x1 . . . @xn

´
Surx1,...,xns “ Sxn`1 $Ñ Dx0 ωproofRob.

`
x0, xurx1,...,xns “ xn`1y

˘ ¯
.

We notice then that for any term a, b we have the following proof:
ax.

Sa “ Sx rb{xs $ Sa “ Sx rb{xs
wknl

a “ b, Sa “ Sx rb{xs $ Sa “ Sx rb{xs
wknl

a “ b, Sa “ Sx rb{xs, Sa “ Sx ra{xs $ Sa “ Sx rb{xs
Rep

a “ b, Sa “ Sa $ Sa “ Sb
Ref

a “ b $ Sa “ Sb
Or simply

ax.

Sa “ Sb $ Sa “ Sb
wknl

a “ b, Sa “ Sb $ Sa “ Sb
wknl

a “ b, Sa “ Sb, Sa “ Sa $ Sa “ Sb
Rep

a “ b, Sa “ Sa $ Sa “ Sb
Ref

a “ b $ Sa “ Sb
Then, we consider one application of the cut rule to get a proof of
Rob. $ Sa “ Sb assuming a proof of Rob. $ a “ b

...
Rob. $ a “ b

ax.

Sa “ Sb $ Sa “ Sb
wknl

a “ b, Sa “ Sb $ Sa “ Sb
wknl

a “ b, Sa “ Sb, Sa “ Sa $ Sa “ Sb
Rep

a “ b, Sa “ Sa $ Sa “ Sb
Ref

a “ b $ Sa “ Sb
cut

Rob. $ Sa “ Sb

So, replacing a by urx1,...,xns, and b by xn`1 we obtain

...
Rob. $ urx1,...,xns “ xn`1

ax.

Surx1,...,xns “ Sxn`1 $ Surx1,...,xns “ Sxn`1
wknl

urx1,...,xns “ xn`1, Surx1,...,xns “ Sxn`1 $ Surx1,...,xns “ Sxn`1
wknl

urx1,...,xns “ xn`1, Surx1,...,xns “ Sxn`1, Surx1,...,xns “ Surx1,...,xns $ Surx1,...,xns “ Sxn`1
Rep

urx1,...,xns “ xn`1, Surx1,...,xns “ Surx1,...,xns $ Surx1,...,xns “ Sxn`1
Ref

urx1,...,xns “ xn`1 $ Surx1,...,xns “ Sxn`1
cut

Rob. $ Surx1,...,xns “ Sxn`1

So, from the code of a “ proof ” of Rob. $ urx1,...,xns “ xn`1 we easily obtain
a “ proof ” of Rob. $ Surx1,...,xns “ Sxn`1.
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We then make use of the fact that urx1,...,xns “ xn`1 is ”0
0 to obtain

Rob.`I!0
1 $c @x1 . . . @xn`1

´
Surx1,...,xns “ xn`1 $Ñ Dx0 ωproofRob.

`
x0, xSurx1,...,xns “ xn`1y

˘ ¯
.

t “ u`v We need to show

Rob.`I!0
1 $c @x1 . . . @xn`1

´
pu`vqrx1,...,xns “ xn`1 Ñ Dx0 ωproofRob.

`
x0, xpu`vqrx1,...,xns “ xn`1y

˘ ¯
.

The proof goes by induction on v.

v “ 0 We need to show

Rob.`I!0
1 $c @x1 . . . @xn`1

´
pu`0qrx1,...,xns “ xn`1 Ñ Dx0 ωproofRob.

`
x0, xpu`0qrx1,...,xns “ xn`1y

˘ ¯

Since by 4 @x x`0 “ x we have

Rob. $c @x1 . . . @xn`1 pu`0qrx1,...,xns “ urx1,...,xns

Since our proof is by induction on the complexity of the term t and u is less
complicated than t “ u`v, we have

Rob.`I!0
1 $c @x1 . . . @xn`1

´
urx1,...,xns “ xn`1 Ñ Dx0 ωproofRob.

`
x0, xurx1,...,xns “ xn`1y

˘ ¯

The “ code ” of the following “ proof ” yields the result.

...
Rob. $ u “ xn`1

ax.
u`0 “ u $ u`0 “ u @l

@x0 x0`0 “ x0 $ u`0 “ u

ax.
u`0 “ xn`1 $ u`0 “ xn`1

wknl
u “ xn`1, u`0 “ xn`1 $ u`0 “ xn`1

wknl
u “ u`0, u “ xn`1, u`0 “ xn`1 $ u`0 “ xn`1

Rep
u`0 “ u, u “ xn`1 $ u`0 “ xn`1

cut
@x0 x0`0 “ x0, u “ xn`1 $ u`0 “ xn`1

cut
Rob. $ u`0 “ xn`1

v “ xi We need to show

Rob.`I!0
1 $c @x1 . . . @xn`1

´
pu`xiqrx1,...,xns “ xn`1 Ñ Dx0 ωproofRob.

`
x0, xpu`xiqrx1,...,xns “ xn`1y

˘ ¯

For this purpose we use the fact pu`xiqrx1,...,xns “ xn`1 is ”0
0 and proceed

by induction on xn`1:

(1) The initial case is xi “ 0, which we already considered.
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(2) Assuming

Rob.`I!0
1 $c @x1 . . . @xn`1

´
pu`xiqrx1,...,xns “ xn`1 Ñ Dx0 ωproofRob.

`
x0, xpu`xiqrx1,...,xns “ xn`1y

˘ ¯

Rob.`I!0
1 $c @x1 . . . @xn`1

´
pu`Sxiqrx1,...,xns “ xn`1 Ñ Dx0 ωproofRob.

`
x0, xpu`Sxiqrx1,...,xns “ xn`1y

˘ ¯

Once again, we proceed by induction on xn`1:

(a) The initial case is xn`1 “ 0. We need to show

Rob.`I!0
1 $c @x1 . . . @xn`1

´
pu`Sxiqrx1,...,xns “ 0 Ñ Dx0 ωproofRob.

`
x0, xpu`Sxiqrx1,...,xns “ 0y

˘ ¯

which follows immediately by 5 @x @y
`
x`Sy “ Spx`yq

˘
and 1 @x Sx ‰ 0 .

(b) We assume

Rob.`I!0
1 $c @x1 . . . @xn`1

´
pu`Sxiqrx1,...,xns “ xn`1 Ñ Dx0 ωproofRob.

`
x0, xpu`Sxiqrx1,...,xns “ xn`1y

˘ ¯

and we need to show

Rob.`I!0
1 $c @x1 . . . @xn`1

´
pu`Sxiqrx1,...,xns “ Sxn`1 Ñ Dx0 ωproofRob.

`
x0, xpu`Sxiqrx1,...,xns “ Sxn`1y

˘ ¯

By

5 @x @y
`
x`Sy “ Spx`yq

˘

and

3 @x @y pSx “ Sy Ñ x “ yq

we have

Rob.`I!0
1 $c @x1 . . . @xn`1

´
pu`Sxiqrx1,...,xns “ Sxn`1 Ñ pu`xiqrx1,...,xns “ xn`1

¯

By the previous induction hypothesis, we have

Rob.`I!0
1 $c @x1 . . . @xn`1

´
pu`Sxiqrx1,...,xns “ Sxn`1 Ñ Dx0 ωproofRob.

`
x0, xpu`xiqrx1,...,xns “ xn`1y

˘ ¯

For this consider the “ code ” of the following “ proof ” where a, b, c are re-
placed respectively by urx1,...,xns, xirx1,...,xns, xn`1.

ax.

a`Sb “ Spa`bq $ a`Sb “ Spa`bq
@l

@x1 a`Sx1 “ Spa`x1q $ a`Sb “ Spa`bq
@l

@x0 @x1 x0`Sx1 “ Spx0`x1q $ a`Sb “ Spa`bq

...
Rob. $ a`b “ c

ax.

Spa`bq “ Sc $ Spa`bq “ Sc
wknl

pa`bq “ c, Spa`bq “ Sc $ Spa`bq “ Sc
wknl

pa`bq “ c, Spa`bq “ Sc, Spa`bq “ Spa`bq $ Spa`bq “ Sc
Rep

pa`bq “ c, Spa`bq “ Spa`bq $ Spa`bq “ Sc
Ref

pa`bq “ c $ Spa`bq “ Sc
cut

Rob. $ Spa`bq “ Sc

ax.

a`Sb “ Sc $ a`Sb “ Sc
wknl

a`Sb “ Sc, Spa`bq “ Sc $ a`Sb “ Sc
wknl

Spa`bq “ a`Sb, a`Sb “ Sc, Spa`bq “ Sc $ a`Sb “ Sc
Ref

a`Sb “ Spa`bq, Spa`bq “ Sc $ a`Sb “ Sc
cut

Rob., a`Sb “ Spa`bq $ a`Sb “ Sc
cut

Rob. $ a`Sb “ Sc
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This terminates the proof by induction on xn`1. Hence, we obtain precisely
the formula that we needed to complete the proof by induction on xi. There-
fore, the whole result is proved.

v “ v0`v1 is left as a tedious exercise.

v “ v0¨v1 is left as a tedious exercise as well.

t “ u¨v We need to show

Rob.`I!0
1 $c @x1 . . . @xn`1

´
pu¨vqrx1,...,xns “ xn`1 Ñ Dx0 ωproofRob.

`
x0, xpu¨vqrx1,...,xns “ xn`1y

˘ ¯
.

The proof is similar to the case of the addition, and we leave it as a long and
tedious exercise.

We took care of atomic formulas. The next result will — almost — take care of ”0
0-formula

(notice that the negation is missing in what follows).

Lemma 4.5

The set of all formulas ω that satisfy

Rob.`I!0
1 $c @x1 . . . @xn

´
ωrx1,...,xns $Ñ Dx0 ωproofRob.

`
x0, xωrx1,...,xnsy

˘ ¯
.

is closed under

˝ conjunction

˝ disjunction

˝ bounded universal quantification

˝ existential quantification.

Proof of Lemma 4.5:

Conjunction: if ω :“ pε ^ ϖq, and

˝ Rob.`I!0
1 $c @x1 . . . @xn

´
εrx1,...,xns Ñ Dx0 ωproofRob.

`
x0, xεrx1,...,xnsy

˘ ¯

˝ Rob.`I!0
1 $c @x1 . . . @xn

´
ϖrx1,...,xns Ñ Dx0 ωproofRob.

`
x0, xϖrx1,...,xnsy

˘ ¯
.

We consider the “ code ” of the following “ proof ”:
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...
Rob. $ ε

...
Rob. $ ϖ

^r ` ctr l

Rob. $ ε ^ ϖ

which yields

˝ Rob.`I!0
1 $c @x1 . . . @xn

´
pε ^ ϖqrx1,...,xns Ñ Dx0 ωproofRob.

`
x0, xpε ^ ϖqrx1,...,xnsy

˘ ¯
.

Disjunction: if ω :“ pε _ ϖq, and

˝ Rob.`I!0
1 $c @x1 . . . @xn

´
εrx1,...,xns Ñ Dx0 ωproofRob.

`
x0, xεrx1,...,xnsy

˘ ¯

We consider the “ code ” of the following “ proof ”:

...
Rob. $ ε _r

Rob. $ ε _ ϖ

which yields

˝ Rob.`I!0
1 $c @x1 . . . @xn

´
pε _ ϖqrx1,...,xns Ñ Dx0 ωproofRob.

`
x0, xpε _ ϖqrx1,...,xnsy

˘ ¯
.

Existential quantification: we consider Dy ω, assuming that the following holds:

˝ Rob.̀ I!0
1 $c @x1 . . . @xn @y

´
ωrx1,...,xn,ys Ñ Dx0 ωproofRob.

`
x0, xωrx1,...,xn,ysy

˘ ¯
.

by considering the “ code ” of the following “ proof ”

...
Rob. $ ωrx1,...,xn,ys

DrRob. $ Dy ωrx1,...,xns

we obtain

˝ Rob.`I!0
1 $c @x1 . . . @xn @y

´
ωrx1,...,xn,ys Ñ Dx0 ωproofRob.

`
x0, xDy ωrx1,...,xnsy

˘ ¯

Now given any formula ε in which y does not occur freely, we have

˝ $c @x1 . . . @xn @y
´
ωrx1,...,xn,ys Ñ ε

¯
%Ñ @x1 . . . @xn

´
Dyωrx1,...,xns Ñ ε

¯
.

Since y does not occur freely in the formula Dx0 ωproofRob.

`
x0, xDy ωrx1,...,xnsy

˘
, we obtain

˝ Rob.̀ I!0
1 $c @x1 . . . @xn

´
Dy ωrx1,...,xns Ñ Dx0 ωproofRob.

`
x0, xDy ωrx1,...,xnsy

˘ ¯
.
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Bounded universal quantification: without loss of generality we consider formulas of
the form @y " xm ω since for every term t the formula @y " t ω we have

$c @y " t ω %Ñ @y " xm pxm “ t ^ εq.

We assume that the following holds:

˝ Rob.̀ I!0
1 $c @x1 . . . @xn @y

´
ωrx1,...,xn,ys Ñ Dx0 ωproofRob.

`
x0, xωrx1,...,xn,ysy

˘ ¯
.

Strictly speaking, the formula @y " xm ω stands for @y
`
y " xm $Ñ ω

˘
which is

nothing but @y
`
Dz pz ‰ 0 ^ z`y “ xmq $Ñ ω

˘
where y does not occur (freely) in

ω and we have

$c @y
`
Dz pz ‰ 0 ^ z`y “ xmq Ñ ω

˘
%Ñ @y @z

`
pz ‰ 0 ^ z`y “ xmq Ñ ω

˘

We need to prove

˝ Rob.`I!0
1 $c @x1 . . . @xn @xm

´
@y " xm ωrx1,...,xns Ñ Dx0 ωproofRob.

`
x0, x@y " xm ωrx1,...,xnsy

˘ ¯

We prove the result by induction on xm, which means that we make use of an instance
of the induction schema. For this, we need to show that

(1) the case holds for xm “ 0,

(2) and that it also holds for Sxm, assuming the case holds for xm.

(1) the initial case is

˝ Rob.`I!0
1 $c @x1 . . . @xn

´
@y " 0 ωrx1,...,xns Ñ Dx0 ωproofRob.

`
x0, x@y " 0 ωrx1,...,xnsy

˘ ¯

which is easy since the following holds.

˝ Rob.`I!0
1 $c @y ( y " 0

(2) we assume

˝ Rob.`I!0
1 $c @x1 . . . @xn @xm

´
@y " xm ωrx1,...,xns Ñ Dx0 ωproofRob.

`
x0, x@y " xm ωrx1,...,xnsy

˘ ¯

and we show

˝ Rob.`I!0
1 $c @x1 . . . @xn @xm

´
@y " Sxm ωrx1,...,xns Ñ Dx0 ωproofRob.

`
x0, x@y " Sxm ωrx1,...,xnsy

˘ ¯

Firstly, notice that we have

˝ Rob. $c @y @xm

´
y " Sxm %Ñ

`
y " xm _ y “ xm

˘¯

Secondly, we have both
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˝ Rob.`I!0
1 $c @x1 . . . @xn @xm

´
ωrx1,...,xn,xms Ñ Dx0 ωproofRob.

`
x0, xωrx1,...,xn,xmsy

˘ ¯

˝ Rob.`I!0
1 $c @x1 . . . @xn @xm

´
@y " xm ωrx1,...,xns Ñ Dx0 ωproofRob.

`
x0, x@y " xm ωrx1,...,xnsy

˘ ¯

By mixing accordingly the two “ proofs ” we get what we need.

We finally come to the proof of the main lemma.

Lemma 4.6

Let ω be any closed !0
1-formula.

Rob.`I!0
1 $c ω $Ñ Dx1ωproofRob.

px1, xωyq .

Proof of Lemma 4.6:

From previous lemmas we already know that this result holds for the class ! that contains
all atomic formulas (Lemma 4.4) and is closed under (Lemma 4.5)

˝ conjunction

˝ disjunction

˝ bounded universal quantification

˝ existential quantification.

We recall that ”0
0 was described as the least class that

(1) contains all atomic formulas: t0 “ t1

(2) is closed under conjunctions, disjunctions and negations

(3) is closed under bounded quantifications.

Notice that ”0
0 can equivalently be defined as the least class that

(1) contains all atomic formulas: t0 “ t1

(2) contains all negations of atomic formulas: t0 ‰ t1

(3) is closed under conjunctions and disjunctions

(4) is closed under bounded quantifications.

So, notice that in order to show that ! “ !0
1, it is enough to show that ! contains all

negations of atomic formulas (t0 ‰ t1).
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To see establish this, we notice that every formula of the form t ‰ u (where t and u are
terms) satisfies

˝ Rob.`I!0
1 $c @x1 . . . @xn

´
t ‰ u %Ñ

`
Dx0 t`Sx0 “ u _ Dx0 u`Sx0 “ t

˘¯
.

Since the formula @x1 . . . @xn

`
Dx0 t`Sx0 “ u _ Dx0 u`Sx0 “ t

˘
belongs to !, we

have

˝ Rob.`I!0
1 $c @x1 . . . @xn

´`
Dx0 t`Sx0 “ u _ Dx0 u`Sx0 “ t

˘
Ñ Dx0 ωproofRob.

`
x0, x

`
Dx0 t`Sx0 “ u _ Dx0 u`Sx0 “ t

˘
y
˘ ¯

then, from the “ code ” of a “ proof ” of
`
Dx0 t`Sx0 “ u _ Dx0 u`Sx0 “ t

˘
we recover

the “ code ” of a “ proof ” of t ‰ u.

We finally have everything we need in order to prove:

Theorem 4.1: Gödel’s 2
nd

incompleteness theorem

If T ’ Rob.`I!0
1 is any consistent recursive theory, then

T &c conspT q.

Proof of Theorem 4.1:

Follows immediately from Lemmas 3.1 and 4.6. Because the condition required by Lemma
3.1 on a theory T ’ Rob. to satisfy the conditions of the second incompleteness theorem
was that

T $c %rrx!!ys{x0s $Ñ Dx1ωproofRob.

`
x1, rx%rrx!!ys{x0sys

˘
.

And it turns out that the formula %rrx!!ys{x0s is both closed and !0
1 since it is

Dx1 Dx2

`
ωproofT

px1, x2q ^ ωdiagpx2, rx(%ysq
˘

where both ωproofT
px1, x2q and ωdiagpx2, rx(%ysq are formulas that represent primitive recur-

sive relations, hence !0
1.

Gödel second incompleteness Theorem yields some strange consequence.
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Corollary 4.2

Let T ’ Rob.`I!0
1 be any recursive theory.

T is consistent

#ñ

there exists M s. t. M |ù T Y

!
Dxωy

`
Dx0 ωproofT

px0, xωyq ^ Dx0 ωproofT
px0, x(ωyq

˘)
.

Proof of Corollary 4.2:

(ñ) If T ’ Rob.` I!0
1 is any consistent recursive theory, then T &c conspT q holds by

Theorem 4.1. But by the completeness theorem, this is equivalent to T * conspT q

which means that there exists some model M such that M |ù T and M * conspT q.
Therefore, M |ù (conspT q, hence

M |ù Dxωy
`
Dx0 ωproofT

px0, xωyq ^ Dx0 ωproofT
px0, x(ωyq

˘
.

(#) is immediate.

Notice that the model M in Corollary 4.2 cannot be the standard model (N) otherwise we would
have

N |ù Dxωy
`
Dx0 ωproofT

px0, xωyq ^ Dx0 ωproofT
px0, x(ωyq

˘
.

Because, otherwise we would get standard integers that code both a proof of some formula ω and
a proof of (ω, hence from these standard integers we would be able to recover both a proof of ω
and a proof of (ω, which would lead to a proof of K.

So M is some non-standard model which contains two integers (necessarily at least one of them is
non-standard) rε and r!ε which code a proof of ω from T and a proof of (ω from T , respectively.
Then, of course, from both rε and r!ε one may easily construct an integer rK which codes a
proof of K from T . However, since rK is some non-standard integer, it does not help in providing
a proof of a contradiction from T .

Notice also that given any consistent recursive theory T ’ Rob.`I!0
1, it is easy to find some

consistent recursive extension T 1 of T that satisfies T 1
$c conspT q. This can be done, for

instance, by simply taking T 1
“ T Y conspT q. Indeed, T 1 is clearly recursive, and it is consistent

because
T, conspT q $c K #ñ T 1

$c (conspT q #ñ T $c K.

By induction on n P N, we construct a family pTnqnPN of theories ordered by inclusion:
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˝ T0 “ T

˝ Tn`1 “ Tn Y tconspTnqu.

Clearly, every theory Tn is both consistent and recursive. To see that it is consistent, we proceed
by induction. Assuming that Tn is consistent, it follows that if Tn`1 is inconsistent, then we
have

Tn, conspTnq $c K #ñ Tn $c (conspTnq #ñ Tn $c K.

Now we have for each integer n:

Tn`1 $c conspTnq but Tn`1 &c conspTn`1q.

Let Tϑ be the theory Tϑ “

"

nPN
Tn, Tϑ is consistent since otherwise, by compactness Tϑ $c K would

yield Tn $c K for some large enough integer n.

We see that this procedure can be extended all along the recursive countable ordinals.

Definition 4.2

A countable ordinal ϑ is recursive if there exists some well ordering pN, !q such that

(1)
#

pa, bq P N ˆ N | a ! b
(
is recursive, and

(2) ϑ is order-isomorphic to pN, !q.

It is not di”cult to show that the class of recursive ordinals is some countable initial segment of
the class of all ordinals. This justifies the following definition.

Definition 4.3

The Church-Kleene ordinal φCK
1 is the least ordinal which is not recursive.

Since there are only countably many recursive subsets of N ˆ N, it follows that φCK
1 " φ1.

˝ T0 “ T

˝ Tϖ`1 “ Tϖ Y tconspTϖqu.

˝ Tϱ “

"

ϖ"ϱ

Tϖ (↼ limit and ↼ " φCK
1 ).
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To show that every Tϖ is consistent (any ϑ " φCK
1 ), it remains to show that Tϱ is consistent

when ↼ is a limit ordinal. This is immediate, since

Tϱ “

"

ϖ"ϱ

Tϖ and Tϱ $c K implies Tϖ $c K holds for some ϑ " ↼.

It follows that every Tϖ is consistent and does not prove its own consistency, but the consistency
of all Tω for ς " ϑ.
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